µ±Å×ÎïÏߵĽâÎöʽÖк¬ÓÐ×ÖĸϵÊýʱ£¬Ëæ×ÅϵÊýÖÐ×ÖĸȡֵµÄ²»Í¬£¬Å×ÎïÏߵĶ¥µã×ø±êÒ²½«·¢Éú±ä»¯£®ÀýÈ磺ÓÉÅ×ÎïÏßy=x2-2mx+m2+2m-1¡­£¨1£©
µÃ£ºy=£¨x-m£©2+2m-1¡­£¨2£©
x0=m  (3)
y0=2m-1  (4)

¡àÅ×ÎïÏߵĶ¥µã×ø±êΪ£¨m£¬2m-1£©£¬É趥µãΪP£¨x0£¬y0£©£¬Ôò£º
µ±mµÄÖµ±ä»¯Ê±£¬¶¥µãºá¡¢×Ý×ø±êx0£¬y0µÄÖµÒ²ËæÖ®±ä»¯£¬½«£¨3£©´úÈ루4£©
µÃ£ºy0=2x0-1£®¡­£¨5£©
¿É¼û£¬²»ÂÛmÈ¡ÈκÎʵÊýʱ£¬Å×ÎïÏߵĶ¥µã×ø±ê¶¼Âú×ãy=2x-1£®
¸ù¾ÝÔĶÁ²ÄÁÏÌṩµÄ·½·¨£¬È·¶¨Å×ÎïÏßy=x2-2mx+2m2-4m+3µÄ¶¥µã×Ý×ø±êyÓëºá×ø±êxÖ®¼äµÄº¯Êý¹Øϵʽ£®
¡ßy=x2-2mx+2m2-4m+3£¬
=£¨x2-2mx+m2£©+m2-4m+3£¬
=£¨x-m£©2+m2-4m+3£¬
¡àÅ×ÎïÏߵĶ¥µã×ø±êΪ£¨m£¬m2-4m+3£©£¬É趥µãΪP£¨x0£¬y0£©£¬
Ôòy0=x02-4x0+3£¬
¡àÅ×ÎïÏߵĶ¥µã×ø±êÂú×ãy=x2-4x+3£®
¹Ê´ð°¸Îª£ºy=x2-4x+3£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£ºÔÚÖ±½Ç×ø±êϵÖУ¬A¡¢BÁ½µãÊÇÅ×ÎïÏßy=x2-£¨m-3£©x-mÓëxÖáµÄ½»µã£¨AÔÚBµÄÓҲࣩ£¬x1¡¢x2·Ö±ðÊÇA¡¢BÁ½µãµÄºá×ø±ê£¬ÇÒ|x1-x2|=3£®
£¨1£©µ±m£¾0ʱ£¬ÇóÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©Èç¹û£¨1£©ÖÐËùÇóµÄÅ×ÎïÏßÓëyÖá½»ÓÚµãC£¬ÎÊyÖáÉÏÊÇ·ñ´æÔÚµãD£¨²»º¬ÓëCÖغϵĵ㣩£¬Ê¹µÃÒÔD¡¢O¡¢AΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷AOCÏàËÆ£¿Èô´æÔÚ£¬ÇëÇó³öDµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Ò»´Îº¯Êýy=kx+bµÄͼÏó¾­¹ýÅ×ÎïÏߵĶ¥µã£¬ÇÒµ±k£¾0ʱ£¬Í¼ÏóÓëÁ½×ø±êÖáËùΧ³ÉµÄÃæ»ýÊÇ
15
£¬ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©£¬Èç¹ûµ±xÈ¡ÈÎÒâÕûÊýʱ£¬º¯ÊýÖµy¶¼ÊÇÕûÊý£¬´Ëʱ³Æ¸Ãµã¾«Ó¢¼Ò½ÌÍø£¨x£¬y£©ÎªÕûµã£¬¸Ãº¯ÊýµÄͼÏóΪÕûµãÅ×ÎïÏߣ¨ÀýÈ磺y=x2+2x+2£©£®
£¨1£©ÇëÄãд³öÒ»¸ö¶þ´ÎÏîϵÊýµÄ¾ø¶ÔֵСÓÚ1µÄÕûµãÅ×ÎïÏߵĽâÎöʽ
 
£¨²»±ØÖ¤Ã÷£©£»
£¨2£©ÇëÖ±½Óд³öÕûµãÅ×ÎïÏßy=x2+2x+2ÓëÖ±Ïßy=4Χ³ÉµÄÒõӰͼÐÎÖУ¨²»°üÀ¨±ß½ç£©Ëùº¬µÄÕûµã¸öÊýÓÐ
 
¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£ºÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ò»´Îº¯Êýy=kx-4kµÄͼÏóÓëxÖá½»ÓÚµãA£¬Å×ÎïÏßy=ax2+bx+c£¨a£¾0£©¾­¹ýO¡¢AÁ½µã£®
£¨1£©ÇóµãAµÄ×ø±ê£¬²¢Óú¬aµÄ´úÊýʽ±íʾb£»
£¨2£©ÒÑÖªµãC£¨1£¬5£©£¬µãBÊÇÅ×ÎïÏßÉÏÒ»µã£¬ÇÒËıßÐÎOABCΪƽÐÐËıßÐΣ¬Çó´ËʱÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÉèµãDÊÇÅ×ÎïÏßÉÏÇÒÔÚÖ±ÏßOBÏ·½µÄÒ»¸ö¶¯µã£¬µ±¡÷OBDÊǵÈÑüÈý½ÇÐÎʱ£¬·ûºÏÌõ¼þµÄµãDÓм¸¸ö£¿ÇëÇó³öÆäÖÐÒ»¸öµãDµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÄÏƽ£©ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¾ØÐÎOABCÈçͼËùʾ·ÅÖ㬵ãAÔÚxÖáÉÏ£¬µãBµÄ×ø±êΪ£¨m£¬1£©£¨m£¾0£©£¬½«´Ë¾ØÐÎÈÆOµãÄæʱÕëÐýת90¡ã£¬µÃµ½¾ØÐÎOA¡äB¡äC¡ä£®
£¨1£©Ð´³öµãA¡¢A¡ä¡¢C¡äµÄ×ø±ê£»
£¨2£©Éè¹ýµãA¡¢A¡ä¡¢C¡äµÄÅ×ÎïÏß½âÎöʽΪy=ax2+bx+c£¬Çó´ËÅ×ÎïÏߵĽâÎöʽ£»£¨a¡¢b¡¢c¿ÉÓú¬mµÄʽ×Ó±íʾ£©
£¨3£©ÊÔ̽¾¿£ºµ±mµÄÖµ¸Ä±äʱ£¬µãB¹ØÓÚµãOµÄ¶Ô³ÆµãDÊÇ·ñ¿ÉÄÜÂäÔÚ£¨2£©ÖеÄÅ×ÎïÏßÉÏ£¿ÈôÄÜ£¬Çó³ö´ËʱmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2009Äê¹ã¶«Ê¡Ã¯ÃûÊиßÖн׶ÎѧУÕÐÉú¿¼ÊÔÊýѧÊÔÌâ ÌâÐÍ£º059

ÒÑÖª£ºÈçͼ£¬Ö±Ïßl£º£¬¾­¹ýµã£¬Ò»×éÅ×ÎïÏߵĶ¥µãB1(1£¬y1)£¬B2(2£¬y2)£¬B3(3£¬y3)£¬¡­£¬Bn(n£¬yn)(nΪÕýÕûÊý)ÒÀ´ÎÊÇÖ±ÏßlÉϵĵ㣬Õâ×éÅ×ÎïÏßÓëxÖáÕý°ëÖáµÄ½»µãÒÀ´ÎÊÇ£ºA1(x1£¬0)£¬A2(x2£¬0)£¬A3(x3£¬0)£¬¡­£¬An+1(xn+1£¬0)(nΪÕýÕûÊý)£¬Éèx1£½d(0£¼d£¼1)£®

(1)ÇóbµÄÖµ£»

(2)Çó¾­¹ýµãA1¡¢B1¡¢A2µÄÅ×ÎïÏߵĽâÎöʽ(Óú¬dµÄ´úÊýʽ±íʾ)

(3)¶¨Ò壺ÈôÅ×ÎïÏߵĶ¥µãÓëxÖáµÄÁ½¸ö½»µã¹¹³ÉµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐΣ¬ÔòÕâÖÖÅ×ÎïÏ߾ͳÆΪ£º¡°ÃÀÀöÅ×ÎïÏß¡±£®

̽¾¿£ºµ±d(0£¼d£¼1)µÄ´óС±ä»¯Ê±£¬Õâ×éÅ×ÎïÏßÖÐÊÇ·ñ´æÔÚÃÀÀöÅ×ÎïÏߣ¿Èô´æÔÚ£¬ÇëÄãÇó³öÏàÓ¦µÄdµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸