【题目】阅读下面材料:
小红遇到这样一个问题:如图1,在四边形ABCD中,∠A=∠C=90°,∠D=60°,AB=,BC=,求AD的长.
小红发现,延长AB与DC相交于点E,通过构造Rt△ADE,经过推理和计算能够使问题得到解决(如图2).
请回答:AD的长为 .
参考小红思考问题的方法,解决问题:
如图3,在四边形ABCD中,tanA=,∠B=∠C=135°,AB=9,CD=3,求BC和AD的长.
【答案】(1)6;(2)BC=,AD=.
【解析】
(1)延长AB与DC相交于点E,解直角三角形BEC,得出BE的长,那么AE=AB+BE,再解直角三角形ADE,即可求出AD;
(2)延长AB与DC相交于点E.由∠ABC=∠BCD=135°,得出∠EBC=∠ECB=45°,那么BE=CE,∠E=90°.设BE=CE=x,则BC=x,AE=9+x,DE=3+x.在Rt△ADE中,由tanA=,得出,求出x=3,那么BC=3,AE=12,DE=6,再利用勾股定理即可求出AD.
(1)如图,延长AB与DC相交于点E,
在△ADE中,
∵∠A=90°,∠D=60°,
∴∠E=30°.
在Rt△BEC中,
∵∠BCE=90°,∠E=30°,BC=,
∴BE=2BC=2,
∴AE=AB+BE=4+2=6.
在Rt△ADE中,
∵∠A=90°,∠E=30°,AE=6,
∴AD=AEtan∠E=6×=6.
故答案为:6;
(2)如图,延长AB与DC相交于点E.
∵∠ABC=∠BCD=135°,
∴∠EBC=∠ECB=45°,
∴BE=CE,∠E=90°.
设BE=CE=x,则BC=x,AE=9+x,DE=3+x.
在Rt△ADE中,∠E=90°.
∵tanA=,
∴,即,
∴x=3.
经检验x=3是所列方程的解,且符合题意,
∴BC=3,AE=12,DE=6,
∴AD==6.
科目:初中数学 来源: 题型:
【题目】已知关于x的函数y=+x,如表是y与x的几组对应值:
x | … | ﹣4 | ﹣3 | -2 | - | -1 | - | - | 1 | 2 | 3 | 4 | … | |||
y | … | - | - | - | - | -2 | - | - | 2 | … |
如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出了此函数的图象请你根据学习函数的经验,根据画出的函数图象特征,对该函数的图象与性质进行探究:
(1)该函数的图象关于 对称;
(2)在y轴右侧,函数变化规律是当0<x<1,y随x的增大而减小;当x>1,y随x的增大而增大.在y轴左侧,函数变化规律是 .
(3)函数y=当x 时,y有最 值为 .
(4)若方程+x=m有两个不相等的实数根,则m的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中, .动点P从点B出发,以每秒2个单位长度的速度向终点A运动;同时动点Q从点A出发,以每秒1个单位长度的速度向终点C运动.作PM⊥BC于点M,连结PQ.以PM、PQ为邻边作□PMNQ,设□PMNQ与△ABC重叠部分图形的面积为S,点Q的运动时间为t秒.
(1)_____________(用含t的代数式表示).
(2)当四边形PMNQ是菱形时,求t的值.
(3)求S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴于点和点,交轴于点.已知点的坐标为,点为第二象限内抛物线上的一个动点,连接、、.
(1)求这个抛物线的表达式.
(2)当四边形面积等于4时,求点的坐标.
(3)①点在平面内,当是以为斜边的等腰直角三角形时,直接写出满足条件的所有点的坐标;
②在①的条件下,点在抛物线对称轴上,当时,直接写出满足条件的所有点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,点E、F分别在线段BC、DC上,线段AE绕点A逆时针旋转后与线段AF重合.若,则旋转的角度是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是锐角△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.下列结论:①AF平分∠BAC;②点F为△BDC的外心;③;④若点M,N分别是AB和AF上的动点,则BN+MN的最小值是ABsin∠BAC.其中一定正确的是_____(把你认为正确结论的序号都填上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果函数C:()的图象经过点(m,n)、(-m,-n),那么我们称函数C为对称点函数,这对点叫做对称点函数的友好点.
例如:函数经过点(1,2)、(-1,-2),则函数是对称点函数,点(1,2)、(-1,-2)叫做对称点函数的友好点.
(1)填空:对称点函数一个友好点是(3,3),则b= ,c= ;
(2)对称点函数一个友好点是(2b,n),当2b≤x≤2时,此函数的最大值为,最小值为,且=4,求b的值;
(3)对称点函数()的友好点是M、N(点M在点N的上方),函数图象与y轴交于点A.把线段AM绕原点O顺时针旋转90°,得到它的对应线段A′M′.若线段A′M′与该函数的图象有且只有一个公共点时,结合函数图象,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,D是⊙O上一点,点E是AC的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.
(1)求证:AB=BC;
(2)如果AB=5,tan∠FAC=,求FC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com