精英家教网 > 初中数学 > 题目详情
19.当n为整数时,(n+1)2-(n-1)2能被4整除吗?请说明理由.

分析 利用平方差公式得到原式=4n,然后根据整除性可判断(n+1)2-(n-1)2能被4整除.

解答 解:(n+1)2-(n-1)2=(n+1+n-1)(n+1-n+1)=4n,
∵n为整数,
∴4n为4的整数倍,
所以当n为整数时,(n+1)2-(n-1)2能被4整除.

点评 本题考查了因式分解的应用:用因式分解解决求值问题.利用因式分解解决证明问题.利用因式分解简化计算问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.“六一儿童节”即将结束,某幼儿园计划采购一批市场价为20元/件的益智玩具,甲、乙两家工厂给出了不同的优惠方案,方案如下:
甲工厂:采购金额超过500元后,超过的部分按九折付款;
乙工厂:采购金额超过1000元后,超过的部分按八折付款.
(1)如果幼儿园采购的数量超过了50件,应该到哪家工厂进行采购更合算?
(2)如果幼儿园选择到乙工厂进行采购,那么幼儿园至少应该采购多少件,才能使每件玩具的平均价格不超过18元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,这是一个“上”字的造型,其中AB∥CD,∠DCE=80°,则∠BEF等于(  )
A.100°B.90°C.80°D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在一次数学活动中,小辉将一块矩形纸片ABCD对折,使AD与BC重合,得到折痕EF(即EF为AB的垂直平分线),把纸片展开,再将△BAM沿BM折叠,得到△BNM(即△BAM≌△BNM).

(1)如图1,若点N刚好落在折痕EF上时,且过N作NG⊥BC,求证:NG=$\frac{1}{2}$BN;
(2)如图2,当点N刚好落在折痕EF上时,求∠NBC的度数;
(3)如图3,当M为射线AD上的一个动点时,已知AB=3,BC=5,若△BNC是直角三角形时,请求出AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.请按要求画出函数y=$\frac{1}{2}$x2的图象:
(1)列表;
 x …-3-2-1 0 1 2 3 …
 y$\frac{9}{2}$ 2$\frac{1}{2}$$\frac{1}{2}$ 2$\frac{9}{2}$ 
(2)描点;
(3)连线;
(4)请你判断点(4,8)、(-$\frac{1}{2}$,-$\frac{1}{8}$)是否在函数图象上,答:点(4,8)在函数图象上,点(-$\frac{1}{2}$,-$\frac{1}{8}$)不在函数图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知x1,x2是方程x2-2x-5=0的两实数根,则x2-x1的值为±2$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,平面直角坐标系中,矩形OABC的对角线AC=10,边OA=6.
(1)C点的坐标为(8,0);
(2)把矩形OABC沿直线DE对折使点C落在点A处,直线DE与OC、AC、AB的交点分别为D,F,E,求折痕DE的长;
(3)若点M在x轴上,以M、D、F、N为顶点的四边形是菱形,请直接写出所有符合条件的点N的坐标($\frac{1}{4}$,3)、($\frac{31}{4}$,3)、( $\frac{7}{8}$,3)..

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.小明和小红同时从学校出发骑自行车到公园后返回,他们与学校的距离y(千米)和离开学校的时间x(分钟)之间的关系如图.
请根据图象回答:
(1)如果小明两次经过途中某一地点的时间间隔为15分钟,求该地与学校的距离;
(2)若小红出发35分钟后两人相遇,求小红从公园回到学校所用的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.
解:过P点作PM∥AB交AC于点M.
∵AB∥CD,(已知)
∴∠BAC+∠ACD=180°. (两直线平行,同旁内角互补)
∵PM∥AB,
∴∠1=∠2,(两直线平行,内错角相等)
且PM∥DC.(平行于同一直线的两直线也互相平行)
∴∠3=∠4. (两直线平行,内错角相等)
∵AP平分∠BAC,CP平分∠ACD,(已知)
∴∠1=$\frac{1}{2}$∠BAC,∠4=$\frac{1}{2}$ACD.
∴∠1+∠4=$\frac{1}{2}$∠BAC+$\frac{1}{2}$∠ACD=90°.
∴∠APC=∠2+∠3=∠1+∠4=90°.
总结:两直线平行时,同旁内角的角平分线互相垂直.

查看答案和解析>>

同步练习册答案