精英家教网 > 初中数学 > 题目详情
如图,△ABC中,D为AB的中点,E为AC上一点,过D作DF∥BE交AC于O,EF∥AB.
(1)猜想:OD与OF之间的关系是
OD=OF
OD=OF

(2)证明你的猜想.
分析:(1)0D=OF,
(2)由已知可得四边形BDFE是平行四边形,从而可得BD=EF,由中点的定义可得AD=BD,再根据平行线的性质即可得到∠ADO=∠EFO,∠DAO=∠FEO,从而可利用ASA判定△ADO≌△EFO,根据全等三角形的对应边相等即可得到OD=OF,OA=OE,即得到AE与DF互相平分,或连接AF、DE,然后证明四边形DEFA是平行四边形,再根据平行四边形的对角线互相平分证明.
解答:解:(1)OD=OF;

(2)∵EF∥AB,DF∥BE,
∴四边形BDFE是平行四边形,
∴BD=EF,
∵D是AB的中点,
∴AD=BD,
∴EF=AD,
∵EF∥AB,
∴∠ADO=∠EFO,∠DAO=∠FEO,
∠ADO=∠EFO
EF=AD
∠DAO=∠FEO

∴△ADO≌△EFO,
∴OD=OF.
点评:此题主要考查平行四边形的判定及性质和全等三角形的判定及性质的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案