【题目】二次函数 y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线 x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是_____.
【答案】①②③
【解析】分析:由抛物线开口方向得到a>0,由抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进行判断;利用抛物线的对称轴方程得到b=-2a,加上x=-1时,y>0,即a-b+c>0,则可对④进行判断.
详解:∵抛物线开口向上,
∴a>0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴ab<0,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b24ac>0,所以②正确;
∵x=1时,y<0,
∴a+b+c<0,
而c<0,
∴a+b+2c<0,所以③正确;
∵抛物线的对称轴为直线x==1,
∴b=2a,
而x=1时,y>0,即ab+c>0,
∴a+2a+c>0,所以④错误.
故答案为:①②③.
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=6,BC=12,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C,D的对应点分别为C′,D′,折痕与边AD交于点F,当点B,C′,D′恰好在同一直线上时,AF的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点,当AB:AD=___________时,四边形MENF是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.
男、女生所选项目人数统计表
项目 | 男生(人数) | 女生(人数) |
机器人 | 7 | 9 |
3D打印 | m | 4 |
航模 | 2 | 2 |
其他 | 5 | n |
根据以上信息解决下列问题:
(1)m=_____,n=_____;
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为_____°;
(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线(a≠0)经过A(-1,0),B(2,0)两点,与y轴交于点C.
(1)求抛物线的解析式及顶点D的坐标;
(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;
(3) 点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似,若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线T1:y=-x2-2x+3,T2:y=x2-2x+5,其中抛物线T1与x 轴交于A、B两点,与y轴交于C点.P点是x轴上一个动点,过P点并且垂直于x轴的直线与抛物线T1和T2分别相交于N、M两点.设P点的横坐标为t.
(1)用含t的代数式表示线段MN的长;当t为何值时,线段MN有最小值,并求出此最小值;
(2)随着P点运动,P、M、N三点的位置也发生变化.问当t何值时,其中一点是另外两点连接线段的中点?
(3)将抛物线T1平移, A点的对应点为A'(m-3,n),其中≤m≤,且平移后的抛物线仍经过C点,求平移后抛物线顶点所能达到的最高点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com