【题目】已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),
(1)求二次函数和一次函数解析式.
(2)求△OAB的面积.
【答案】(1)一次函数表达式为y=﹣x﹣2,二次函数表达式为y=﹣x2,(2)3
【解析】
(1)利用点A的坐标可求出直线与抛物线的解析式;
(2)求出点G的坐标及点B的坐标,利用S△OAB=OG|A的横坐标|+OG点B的横坐标求解即可.
解:(1)∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),
∴﹣1=﹣k﹣2,解得k=﹣1,
∴一次函数表达式为y=﹣x﹣2,
∵y=ax2过点A(﹣1,﹣1),
∴﹣1=a×1,解得a=﹣1,
∴二次函数表达式为y=﹣x2,
(2)在y=﹣x﹣2中,令x=0,得y=﹣2,
∴G(0,﹣2),
由一次函数与二次函数联立可得,
解得或
∴点B的坐标为(2,-4)
∴S△OAB=OG|A的横坐标|+OG点B的横坐标=×2×1+×2×2=1+2=3.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2012个正方形的面积为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm.点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s.当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB'F,设点E,F,G运动的时间为t(单位:s).
(1)当t= s时,四边形EBFB'为正方形;
(2)若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;
(3)是否存在实数t,使得点B'与点O重合?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在以AB为直径的半⊙O上有点C,点D在上,过圆心作OF⊥CD的于点F,OF、AD的延长线交于点E,连结CE,若∠DEC=90°.
(1)试说明∠BAC=45°;
(2)若DF=1,△ACE的面积为△DCE面积的3倍,连接AC交OE于点P,求tan∠ACD的值和OP的长;
(3)在(2)的条件下,延长EC与AB的延长线相交于点G,直接写出BG的长 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y=的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA.若△ACO的面积为3,则k=﹣6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0,其中真命题个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△OAB中,∠OAB=90°,OA=AB,将△OAB物点O逆时针方向旋转90°得到△OA1B1.
(1)求∠AOB1的度数;
(2)连结AA1,求证:四边形OAA1B1是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2,现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束,在整个运动过程中,点C运动的路径长是( )
A.πB.2πC.4-2D.10-4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com