分析 (1)由BE为圆O的切线,BA为圆的弦,即∠EAB为圆弦切角,根据弦切角等于所夹弧所对的圆周角,可得出∠EBA=∠C,根据已知的∠EBC=2∠C,得到∠ABC=∠C,根据等角对等边可得出AB=AC,得证;
(2)连接OA,由AB=AC,根据等弦对等劣弧得到A为弧BC的中点,根据垂径定理的逆定理得到OA垂直于BC,D为BC的中点,再由∠EBA=∠C,由tan∠EBA的值得到tanC的值,即为tan∠ABC的值,在直角三角形ABD中,根据锐角三角函数定义得出AD与BD的比值,设AD=k,则有BD=2k,利用勾股定理表示出AB,再由BC=2BD,表示出BC,即可求出AB与BC的比值.
解答 解:(1)∵BE为圆O的切线,BA为圆的弦,
∴∠EBA为弦切角,
∴∠EBA=∠C,又∠EBC=2∠C,
∴∠EBC=2∠EBA,
∴∠ABC=∠C,
∴AB=AC;
(2)连接OA,
∵AB=AC,
∴$\widehat{AB}$=$\widehat{AC}$,
∴OA⊥BC,
∴D为BC的中点,即BD=CD,
∵tan∠ABE=$\frac{1}{2}$,∠EBA=∠ABC,
∴tan∠ABC=$\frac{1}{2}$,
在Rt△ABD中,tan∠ABC=$\frac{AD}{BD}$=$\frac{1}{2}$,
设AD=k,则BD=2k,BC=4k,
在△ABD中,∠ADB=90°,
根据勾股定理得:AB=$\sqrt{{BD}^{2}{+AD}^{2}}$=$\sqrt{5}$k,
则$\frac{AB}{BC}$$\frac{\sqrt{5}k}{4k}$=$\frac{\sqrt{5}}{4}$.
点评 考查了切线的性质,等腰三角形的判定与性质,弦、圆心角及弧之间的关系,勾股定理,垂径定理,圆周角定理,相似三角形的判定与性质,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com