精英家教网 > 初中数学 > 题目详情
(2013•沙湾区模拟)已知⊙O1的半径是2cm,⊙O2的半径是3cm,若这两圆相交,则把它们的圆心距d的取值范围在数轴上表示,应该是(  )
分析:根据两圆的位置关系是相交,则这两个圆的圆心距d大于两半径之差小于两半径之和,从而解决问题.
解答:解:∵3-2=1,3+2=5,
∴1<d<5,
∴数轴上表示为选项B.
故选B.
点评:本题考查了由两圆半径和圆心距之间数量关系判断两圆位置关系的方法,设两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R-r<d<R+r;内切d=R-r;内含d<R-r.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•沙湾区模拟)如图,在平面直角坐标系xOy中,已知点A、B、C 在双曲线y=
6x
上,BD⊥x轴于D,CE⊥y轴于E,点F在x轴上,且AO=AF,则图中阴影部分的面积之和为
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沙湾区模拟)如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沙湾区模拟)如图,将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沙湾区模拟)如图,△ABC的外接⊙O的半径为R,高为AD,∠BAC的平分线交⊙O、BC于E、P,EF切⊙O交AC的延长线于F.
下列结论:①AC•AB=2R•AD;②EF∥BC;③CF•AC=EF•CP;④
CP
BP
=
SinB
SinF

请你把正确结论的番号都写上
①②③④
①②③④
.(填错一个该题得0分)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沙湾区模拟)如图,二次函数y=-
14
x2+bx+c
的图象过点A(4,0),B(-4,-4),与y轴交于点C.
(1)证明:∠BAO=∠CAO(其中O是原点);
(2)在抛物线的对称轴上求一点P,使|CP+BP|的值最小;
(3)若E是线段AB上的一个动点(不与A、B重合),过E作y轴的平行线,分别交此二次函数图象及x轴于F、D两点.请问是否存在这样的点E,使DE=2DF?若存在,请求出点E的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案