分析 (1)观察图形,结合已知条件,可知全等三角形为:△ACD与△CBE.根据AAS即可证明;
(2)根据全等三角形的性质即可得到结论.
解答 (1)证明:∵AD⊥CE,BE⊥CE,
∴∠ADC=∠CEB=90°,
又∵∠ACB=90°,
∴∠ACD=90°-∠ECB=∠CBE.
在△ACD与△CBE中,$\left\{\begin{array}{l}{∠ADC=∠CEB}\\{∠ACD=∠CBE}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△CBE(AAS);
(2)AD=BE-DE,或AD=DE-BE,或AD=DE+BE.
故答案为:AD=BE-DE,或AD=DE-BE,或AD=DE+BE.
点评 本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,解题的关键是:(1)根据(AAS)证出△ACD≌△CBE;.
科目:初中数学 来源: 题型:选择题
A. | d≤$\sqrt{3}$cm | B. | d$<\sqrt{3}$cm | C. | d$≥\sqrt{3}$cm | D. | d$>\sqrt{3}$cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1cm2 | B. | 2cm2 | C. | 0.25cm2 | D. | 0.5cm2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com