精英家教网 > 初中数学 > 题目详情

在有理数的原有的运算法则中,我们补充定义先运算“※”.
如:当a≥b时,a※b=b2;a<b时,a※b=a,则当x=2时,求(1※x)•x-(3※x)的值.
(“-”和“•”仍为有理数运算中的减号和乘号).

解:∵当a≥b时,a※b=b2;a<b时,a※b=a,
∴当x=2时,(1※x)•x-(3※x)
=x2•x-x
=x3-x
=23-2
=6
分析:根据※表示的意义,把x=2代入即可求出结果.
点评:本题主要考查了有理数的混合运算,在解题时要注意运算顺序.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在有理数的原有的运算法则中,我们补充定义先运算“※”.
如:当a≥b时,a※b=b2;a<b时,a※b=a,则当x=2时,求(1※x)•x-(3※x)的值.
(“-”和“•”仍为有理数运算中的减号和乘号).

查看答案和解析>>

科目:初中数学 来源: 题型:

27、填空:在有理数的原有运算法则中,我们补充定义新运算“⊕”如下:
当a≥b时,a⊕b=b2,当a<b时,a⊕b=a,
①计算:[(-2)⊕(-1)]+[(-1)⊕(-2)]=
2

②当x=-2时,计算:(1⊕x)x-(-2)×(-3⊕x)=
-14

查看答案和解析>>

科目:初中数学 来源: 题型:

在有理数的原有运算法则中,我们补充定义新运算“⊕”如下:a⊕b=a2+ab+b.则(-2)⊕2的值为
2
2

查看答案和解析>>

科目:初中数学 来源:贵州省竞赛题 题型:解答题

在有理数的原有的运算法则中,我们补充定义新运算“※”。如:当a≥b时,a※b=b2;a<b时,a※b=a,则当x=2时,求(1※x)x-(3※x)的值。(“-”和“”仍为有理数运算中的减号和乘号)

查看答案和解析>>

同步练习册答案