精英家教网 > 初中数学 > 题目详情
精英家教网如图,在矩形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,若AH:AE=4:3,四边形EFGH的周长是40cm,则矩形ABCD的面积是
 
cm2
分析:由题意知,△AEH,△DHG,△CGF,△EFB是全等三角形,所以EH=HG=FG=EF,即四边形EFGH为菱形,四边形EFGH的周长是40cm,可知边长为10,根据勾股定理可求得AH和AE,即AD和AB的值就可求出,从而求矩形面积.
解答:解:在△AHE和△DHG中,
∵AH=DH=
1
2
AD,∠A=∠D=90°,AE=DG=
1
2
AB,
∴△AHE≌△DHG,
∴EH=GH,
同理EH=GH=GF=EF,
即四边形EFGH为菱形.
又∵四边形EFGH的周长是40cm,
∴EH=10.
∵AH:AE=4:3,
设AH=4x,则AE=3x.
由勾股定理得,EH2=AE2+AH2
∴x=2,AH=8,AE=6,
∴矩形ABCD的面积=16×12=192(cm2).
点评:本题考查了矩形、菱形的性质及勾股定理,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案