精英家教网 > 初中数学 > 题目详情

【题目】如图,放置于平面直角坐标系中,按下面要求画图:

1)画出绕原点逆时针旋转.

2)求点在旋转过程中的路径长度.

【答案】1)详见解析;(2

【解析】

1)连接OAOBOC,利用网格特点和旋转的性质画出点ABC的对应点A1B1C1,顺次连接即可得到△A1B1C1

2)由旋转角为90°可得∠AOA1=90°,利用勾股定理求出OA的长,利用弧长公式求出的长即可得点A在旋转过程中的路径长度.

1)如图,连接OAOBOC

OA1OAOB1OBOC1OC,使OA1=OAOB1=OBOC1=OC

顺次连接A1B1C1,△A1B1C1即为所求,

2)∵旋转角为90°

∴∠AOA1=90°

∴点路径长===.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,是⊙的弦,于点,过点的直线交的延长线于点,且是⊙的切线.

1)判断的形状,并说明理由;

2)若,求的长;

3)设的面积是的面积是,且.若⊙的半径为,求.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教材呈现:下图是华师版九年级上册数学教材第77页的部分内容.

猜想

如图,在ABC中,点DE分别是ABAC的中点,根据画出的图形,可以猜想:

DEBC,且DEBC

对此,我们可以用演绎推理给出证明

证明在ABC中,

∵点DE分别是ABAC的中点,

请根据教材提示,结合图①,写出完整证明过程,

结论应用:

如图②在四边形ABCD中,ADBC,点P是对角线BD的中点,MDC中点,NAB中点,MNBD相交于点Q

1)求证:∠PMN=∠PNM

2)若ADBC4,∠ADB90°,∠DBC30°,则PQ   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线,在四边形ABCD中,对角线BD是它的相似对角线,∠ABC=70°BD平分∠ABC,那么∠ADC=____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,抛物线轴交于点AB(点A在点B的左侧),且AB=6.

1)求这条抛物线的对称轴及表达式;

2)在y轴上取点E0,2),点F为第一象限内抛物线上一点,联结BFEF,如果,求点F的坐标;

3)在第(2)小题的条件下,点F在抛物线对称轴右侧,点P轴上且在点B左侧,如果直线PFy轴的夹角等于∠EBF,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?.意思是:今有甲种袋子中装有黄金9枚(每枚黄金重量相同),乙种袋子中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲种袋子比乙种袋子轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可建立方程为(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习函数的过程中,我们经历了确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题的学习过程,根据你所经历的学习过程,现在来解决下面的问题:在函数yax3bx+2中,当x=﹣1时,y4;当x=﹣2 y0

1)根据已知条件可知这个函数的表达式   

2)根据已描出的部分点,画出该函数图象.

3)观察所画图象,回答下列问题:

①该图象关于点   成中心对称;

②当x取何值时,y随着x的增大而减小;

③若直线yc与该图象有3个交点,直接写出c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量山脚到塔顶的高度(即的长),某同学在山脚处用测角仪测得塔顶的仰角为,再沿坡度为的小山坡前进400米到达点,在处测得塔顶的仰角为.

1)求坡面的铅垂高度(即的长);

2)求的长.(结果保留根号,测角仪的高度忽略不计).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yx2

1)在抛物线上有一点A(11),过点A的直线l与抛物线只有一个公共点,直接写出直线l的解析式;

2)如图1,抛物线有两点FG,连接FGy轴于M,过Gx轴的垂线,垂足为H,连接HMOF,求证:OFMH

3)将抛物线yx2沿直线yx移动,新抛物线的顶点C,与直线的另一个交点为B,与y轴的交点为D,作直线x4与直线CDBD交于点NE,如图2,求EN的长.

查看答案和解析>>

同步练习册答案