【题目】如图,二次函数的图象经过点,,下列说法正确的是( )
A.B.
C.D.图象的对称轴是直线
【答案】D
【解析】
二次函数y=ax2+bx+c(a≠0)
①常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).
②抛物线与x轴交点个数.
△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
③根据x=-1时y的值确定a-b+c的符号.
④根据抛物线与x轴的两个交点坐标确定对称轴.
A.由于二次函数y=ax2+bx+c的图象与y轴交于负半轴,所以c<0,故A错误;
B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2﹣4ac>0,故B错误;
C.当x=﹣1时,y<0,即a﹣b+c<0,故C错误;
D.因为A(1,0),B(4,0),所以对称轴为直线x,故D正确.
故选D.
科目:初中数学 来源: 题型:
【题目】如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.
(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若点C是弧AB的中点,已知AB=4,求CECP的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形内接于,对角线为的直径,过点作的垂线交的延长线于点,过点作的切线,交于点.
(1)求证:;
(2)填空:
①当的度数为 时,四边形为正方形;
②若,,则四边形的最大面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O与矩形ABCD的边AB,CD,AD相切,切点分别为E,F,G,边BC与⊙O交于M,N两点.下列五组条件中,能求出⊙O半径的有( )①已知AB,MN的长;②已知AB,BM的长;③已知AB,BN的长;④已知BE,BN的长;⑤已知BM,BN的长.
A.2组B.3组C.4组D.5组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,老师出示了一个问题:
如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC.现将△ABC与△DEF按如图所示的方式叠放在一起,现将△ABC保持不动, △DEF运动,且满足点E在BC边从B向C移动(不与B、C重合),DE始终经过点A,EF与AC边交于点M.求证:△ABE∽△ECM.
(1)请解答老师提出的问题.
(2)受此问题的启发,小明将△DEF绕点E按逆时针旋转, DE、EF分别交线段AB、AC边于点N、M,连接MN,如图2,当EB=EC时,小明猜想△NEM与△ECM相似.小明的猜想正确吗?请你作出判断,并说明理由.
(3)在(2)的条件下,以E为圆心,作⊙E,使得AB与⊙E相切,请在图3中画出⊙E,并判断直线MN与⊙E的位置关系,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某面粉厂生产某品牌的面粉按质量分5个档次,生产第一档(最低档次)面粉,每天能生产55吨,每吨利润1000元.生产面粉的质量每提高一个档次,每吨利润会增加200元,但每天的产量会减少5吨.
(1)若生产第档次的面粉每天的总利润为元(其中为正整数,且),求生产哪个档次的面粉时,每天的利润最大,每天的最大利润是多少元?
(2)若生产第档次的面粉一天的总利润为60000元,求该面粉的质量档次.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点,连结OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求证:CE⊥AB;
(2)求证:PC是⊙O的切线;
(3)若BD=2OD,且PB=9,求⊙O的半径长和tan∠P的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中, ,,,点是斜边的中点,以点为顶点作,射线、分别交边、于点、.
特例
(1)如图1,若,不添加辅助线,图1中所有与相似的三角形为 , ;
操作探究:
(2)将(1)中的从图1的位置开始绕点按逆时针方向旋转,得到,如图2,当射线,分别交边、于点、时,求的值;
拓展延伸:
(3)如图3,中,,,,点是斜边的中点,以点为顶点作,射线、分别交边、的延长线于点、,则的值为 .(用含、的代数式表示,直接回答即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系xOy中点A的坐标为(﹣1,1),点B的坐标为(3,3),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.
(1)求点E的坐标;
(2)求抛物线的函数解析式;
(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当四边形ABNO的面积最大时,求点N的坐标并求出四边形ABNO面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com