精英家教网 > 初中数学 > 题目详情

若⊙O是△ABC的外接圆,OD⊥BC于D,且∠BOD=48°,则∠BAC=________°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,⊙O是△ABC的边BC外的旁切圆,D、E、F分别为⊙O与BC、CA、AB的切点.若OD与EF相交于K,求证:AK平分BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图i,半圆O为△ABC的外接半圆,AC为直径,D为劣弧
BC
上的一动点,P在CB的延长线上,且有∠BAP=∠BDA.
(1)求证:AP是半圆O的切线;
(2)当其它条件不变时,问添加一个什么条件后,有BD2=BE•BC成立?说明理由;
(3)如图ii,在满足(2)问的前提下,若OD⊥BC精英家教网与H,BE=2,EC=4,连接PD,请探究四边形ABDO是什么特殊的四边形,并求tan∠DPC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,△ABC是⊙O的外切三角形,D、E、F是切点,若∠BAC=65°,∠ACB=35°,则∠DOE=
100
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•闸北区二模)如图,在等腰△ABC中,AB=AC=10cm,cosB=
45
,点G是△ABC的重心.动点E从点A出发沿着射线AG以每秒1cm的速度移动,动点F从点C出发沿着射线CA以每秒2cm的速度移动,点E和点F同时出发,设它们的运动时间为t(秒).
(1)求点A到点G的距离;
(2)在移动过程中,是否存在以点G为圆心GE长为半径的圆与以点C为圆心CF长为半径的圆外切?若存在,求出t值;若不存在,请说明理由;
(3)连接EF,在运动过程中,是否存在△AEF是等腰三角形?若存在,求出t值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,A、B两点被池塘隔开,为测量AB两点的距离,在AB外选一点C,连接AC和BC,并分别找出AC和BC的中点M、N,则MN是△ABC的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,如果测得MN=20m,那么AB=2×20m=40m.
(1)小红说:测AB距离也可以由图2所示用三角形全等知识来解决,请根据题意填空:延长AC到D,使CD=
AC
AC
,延长BC到E,使CE=
BC
BC
,由全等三角形得,AB=ED;
(2)小华说:测AB距离也可以由三角形相似的知识来设计测量方法,求出AB的长;请根据题意在如图3中画出相应的测量图形:延长AC到H,使CH=2AC,延长BC到Q,使CQ=2BC,连接QH;若测得QH的长是400米,你能测出AB的长吗?若能,请测出;若不能,请说明理由.

查看答案和解析>>

同步练习册答案