解:(1)①证明:由旋转性质可知,∠DBE=∠ABC=60°,BD=AB。
∴△ABD为等边三角形。∴∠DAB=60°。∴∠DAB=∠ABC。
∴DA∥BC。
②猜想:DF=2AF。证明如下:
如答图1所示,在DF上截取DG=AF,连接BG,
由旋转性质可知,DB=AB,∠BDG=∠BAF,
∵在△DBG与△ABF中,DB=AB,∠BDG=∠BAF,DG=AF,
∴△DBG≌△ABF(SAS)。∴BG=BF,∠DBG=∠ABF。
∵∠DBG+∠GBE=α=60°,∴∠GBE+∠ABF=60°,即∠GBF=α=60°。
又∵BG=BF,∴△BGF为等边三角形。∴GF=BF。
又∵BF=AF,∴GF=AF。∴DF=DG+GF=AF+AF=2AF。
(2)如答图2所示,在DF上截取DG=AF,连接BG,
由(1),同理可证明△DBG≌△ABF,BG=BF,∠GBF=α。
过点B作BN⊥GF于点N,
∵BG=BF,∴点N为GF中点,∠FBN=
。
在Rt△BFN中,NF=BF•sin∠FBN=BFsin
=mAFsin
.
∴GF=2NF=2mAFsin
。∴DF=DG+GF=AF+2mAFsin
。
∴
。