已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数的图象与线段AB交于M点,且AM=BM.
(1)求点M的坐标;
(2)求直线AB的解析式.
解:(1)过点M作MC⊥x轴,MD⊥y轴,
∵AM=BM,∴点M为AB的中点。
∵MC⊥x轴,MD⊥y轴,∴MC∥OB,MD∥OA。
∴点C和点D分别为OA与OB的中点。
∴MC=MD。则点M的坐标可以表示为(﹣a,a)。
把M(﹣a,a)代入函数中,
解得(负值舍去)。
∴点M的坐标为(﹣,)。
(2)∵则点M的坐标为(﹣,),∴MC=,MD=。
∴OA=OB=2MC=,∴A(﹣,0),B(0,)。
设直线AB的解析式为y=kx+b,
把点A(﹣,0),B(0,)分别代入y=kx+b中得:
,解得:。
∴直线AB的解析式为
解析试题分析:(1)过点M作MC⊥x轴,MD⊥y轴,根据M为AB的中点,MC∥OB,MD∥OA,利用平行线分线段成比例得到点C和点D分别为OA与OB的中点,从而得到MC=MD,设出点M的坐标代入反比例函数解析式中,求出a的值即可得到点M的坐标。
(2)根据(1)中求出的点M的坐标得到MC与MD的长,从而求出OA与OB的长,得到点A与点B的坐标,设出一次函数的解析式,把点A与点B的坐标分别代入解析式中求出k与b的值,确定出直线AB的表达式。
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第二象限,AD平行于x轴,且AB=2,AD=4,点C的坐标为(-2,4).
(1)直接写出A、B、D三点的坐标;
(2)若将矩形只向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,求反比例函数的解析式和此时直线AC的解析式y=mx+n.并直接写出满足的x取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,反比例函数的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n).
(1)求一次函数的表达式;
(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图在平面直角坐标系xOy中,函数(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).
(1)求一次函数的解析式;
(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.
(1)求反比例函数的解析式;
(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(2013年浙江义乌12分)如图1,已知(x>)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.
(1)如图2,连结BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求此时P点的坐标;
(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(2013年四川广安6分)已知反比例函数(k≠0)和一次函数y=x﹣6.
(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值.
(2)当k满足什么条件时,两函数的图象没有交点?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com