精英家教网 > 初中数学 > 题目详情
如图(1),以梯形OABC的顶点O为原点,底边OA所在的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别为:A(14,0),B(11,4),C(3,4),点E以每秒2个单位的速度从O点出发沿射线OA向A点运动,同时点F以每秒3个单位的速度,从O点出发沿折线OCB向B运动,设运动时间为t.
(1)当t=4秒时,判断四边形COEB是什么样的四边形?
(2)当t为何值时,四边形COEF是直角梯形?
(3)在运动过程中,四边形COEF能否成为一个菱形?若能,请求出t的值;若不能,请简要说明理由,并改变E、F两点中任一个点的运动速度,使E、F运动到某时刻时,四边形COEF是菱形,并写出改变后的速度及t的值
(1)作CG⊥OA于G,BH⊥OA于H,且B(11,4),C(3,4),
∴∠CGO=∠BHA=90°,OG=3,CG=4,AH=3,BH=4,BC=8,
∴△CGO≌△BHA,
∴OC=AB,在Rt△OGC中由勾股定理,得
OC2=OG2+CG2,
∴OC2=32+42
∴OC=5,
∴AB=5,
∵点E以每秒2个单位的速度从O点出发沿射线OA向A点运动,
∴当运动时间为4时,OE=8,
∴OE=BC,
∵BCOA,
∴四边形COEB是平行四边形.

(2)如图2,设t秒时四边形COEF是直角梯形,
∴OC+CF=3t,OE=2t,CF=GE,
∴3t-OC=2t-OG,
∴3t-5=2t-3,解得:
t=2.

(3)假设运动t秒后,四边形COEF是菱形,
∴CF=OE=CO=5,
∵OC+CF=3t=10,0E=2t=5,
∴t=
10
3
而t=
5
2

10
3
5
2

∴不存在符合条件的t.
当F的速度每秒4个单位的速度,从O点出发沿折线OCB向B运动,而E点的速度不变,F运动到某时刻时,四边形COEF是菱形.
∴由题意,得4t-5=5,
∴t=
5
2

∴OE=2×
5
2
=5,
∴CF=CO=EO=5,
∴当t=
5
2
时,四边形COEF是菱形.
改变后F的速度为:10÷
5
2
=4
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

四边形ABCD为直角梯形,ADBC,AD=36cm,BC=39cm,点P、Q分别在AD、BC上,且CQ=3AP.当AP为何值时
(1)四边形PQCD为平行四边形;
(2)四边形ABQP的面积等于四边形PQCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在直角梯形ABCD中,∠DAB=∠ABC=90°,ADBC,AD=4,BC=9,E是腰AB上的一点,AE=3,BE=12,取CD的中点M,连接MA,MB,则△AMB与△DEC面积的比值为(  )
A.1B.
13
10
C.
169
150
D.
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,ADBC,∠A=90°,BC=DC,sinC=
3
5
,BC=10,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°.动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AB的长;
(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;
(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在菱形ABCD中,∠DAB=60°,过点C作CE⊥AC且与AB的延长线交于点E.
求证:四边形AECD是等腰梯形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

梯形同一底上的两个角分别为70°和55°,且梯形的上底为7cm,下底为12cm,则与70°角相邻的腰长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,等腰梯形ABCD中,ADBC,∠A=130°,则∠C=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图,并写出它们的周长.

查看答案和解析>>

同步练习册答案