分析 (1)由垂直定义得∠A+∠APO=90°,根据等腰三角形的性质由CP=CB得∠CBP=∠CPB,根据对顶角相等得∠CPB=∠APO,因此∠APO=∠CBP,而∠A=∠OBA,得出∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,然后根据切线的判定定理得到BC是⊙O的切线;
(2)设BC=x,则PC=x,在Rt△OBC中,根据勾股定理得到( $\sqrt{11}$)2+x2=(x+1)2,然后解方程求出PC,即可得出OC的长.
解答 (1)证明:连接OB,如图所示:
∵OP⊥OA,
∴∠AOP=90°,
∴∠A+∠APO=90°,
∵CP=CB,
∴∠CBP=∠CPB,
而∠CPB=∠APO,
∴∠APO=∠CBP,
∵OA=OB,
∴∠A=∠OBA,
∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,
∴OB⊥BC,
∴BC是⊙O的切线;
(2)解:设BC=x,则PC=x,
在Rt△OBC中,OB=$\sqrt{11}$,OC=CP+OP=x+1,
∵OB2+BC2=OC2,
∴($\sqrt{11}$)2+x2=(x+1)2,
解得:x=5,
即BC的长为5,
∴CP=5,
∴OC=CP+OP=5+1=6.
点评 本题考查了切线的判定定理、等腰三角形的性质、直角三角形的性质、勾股定理;熟练掌握切线的判定,由勾股定理得出方程是解决(2)的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com