精英家教网 > 初中数学 > 题目详情
13.观察下列等式$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,将以上三个等式两边分别相加得:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$.
(1)猜想并写出:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$
(2)直接写出下列各式的计算结果:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n×(n+1)}$=$\frac{n}{n+1}$
(3)探究并计算:$\frac{1}{2×4}$+$\frac{1}{4×6}$+$\frac{1}{6×8}$+…+$\frac{1}{2014×2016}$.

分析 (1)根据题中给出的例子即可找出规律;
(2)根据(2)中的规律即可得出结论;
(3)根据规律进行探究即可.

解答 解:(1)∵$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,
∴$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$.
故答案为:$\frac{1}{n}$-$\frac{1}{n+1}$;

(2)原式=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
故答案为:$\frac{n}{n+1}$;

(3)原式=$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{4}$)+$\frac{1}{2}$($\frac{1}{4}$-$\frac{1}{6}$)+$\frac{1}{2}$($\frac{1}{6}$-$\frac{1}{8}$)+…+$\frac{1}{2}$($\frac{1}{2014}$-$\frac{1}{2016}$)
=$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{6}$+$\frac{1}{6}$-$\frac{1}{8}$+…+$\frac{1}{2014}$-$\frac{1}{2016}$)
=$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{2016}$)
=$\frac{1007}{4032}$.

点评 本题考查的是数字的变化类,根据题意找出规律是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知△ABC中,AB=AC,CD⊥AB于D.
(1)若∠A=40°,求∠DCB的度数;
(2)若AB=5,CD=3,求BC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.甲、乙两人骑车从相距50千米的两地同时出发,相向而行,2小时后相遇,已知甲每小时比乙多走3千米,求乙的速度.设乙的速度为x千米/时,列出方程为2(x+3)+2x=50,其中代数式2(x+3)表示的实际意义是甲两小时所走过的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,-3),E(0,-4).
(1)写出D,C,B关于y轴对称点F,G,H的坐标,并画出F,G,H点.
(2)顺次平滑地连接A,B,C,D,E,F,G,H,A各点.观察图形它是轴对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知a-3与+b+1互为相反数,求(-2)2a•(-3)2a•62b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,抛物线y=-$\frac{1}{2}$x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.△ABC是边长为6的等边三角形,D、E是AB、BC上的动点,且BE=DC,连AD、EC交于点M.
(1)求证:△AME∽△ABD;
(2)连DE,若BD=2DC,求证:①DE⊥AB;②连BM,求BM的长;
(3)当D、E在△ABC的边BC、AB上运动时,直接写出△AMC的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.函数y=$\frac{6}{x}$中,若x>1,则y的取值范围为0<y<6,若x<3,则y的取值范围为y<0或y>2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.
(1)建立如图所示的坐标系,求抛物线的解析式;
(2)一艘装满物资的小船,露出水面部分的高为0.8m、宽为4m(横断面如图所示).若暴雨后,水位达到警戒线CD,此时这艘船能从这座拱桥下通过吗?请说明理由.

查看答案和解析>>

同步练习册答案