精英家教网 > 初中数学 > 题目详情
如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.

(1)如图1,求证:△PCD∽△ABC;
(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;
(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.
(1)见解析   (2)当PC是⊙O的直径时,△PCD≌△ABC,
(3)30°
(1)证明:∵AB是⊙O的直径,
∴∠ACB=90°,
∵PD⊥CD,
∴∠D=90°,
∴∠D=∠ACB,
∵∠A与∠P都是对的圆周角,
∴∠A=∠P,
∴△PCD∽△ABC;
(2)解:

当PC是⊙O的直径时,△PCD≌△ABC,
理由:∵AB,PC是⊙O的直径,
∴∠PBC=∠ACB=90°,AB=PC,
∵∠A=∠P
∴△PCD≌△ABC;
(3)解:

∵∠ACB=90°,AC=AB,∴∠ABC=30°
∵OC=OB    ∴∠BCD=∠ABC=30°
(1)由AB是⊙O的直径,根据直径对的圆周角是直角,即可得∠ACB=90°,又由PD⊥CD,可得∠D=∠ACB,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得∠A=∠P,根据有两角对应相等的三角形相似,即可判定:△PCD∽△ABC;
(2)由△PCD∽△ABC,可知当PC=AB时,△PCD≌△ABC,利用相似比等于1的相似三角形全等即可求得;
(3)由∠ACB=90°,AC=AB,可求得∠ABC的度数,然后利用半径OC=OB,等角对等边,继而求得答案.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的直径AB=10,CD是⊙O的弦,AC与BD相交于点P.

(1) 设∠BPC=α,如果sinα是方程5x2-13x+6=0的根,求cosα的值;
(2) 在(1)的条件下,求弦CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是⊙O上一点,OD⊥AC,垂足为E,连接BD.

(1)求证:BD平分∠ABC;
(2)当∠ODB=30°时,求证:BC=OD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点.点P为⊙O上任一点,且与点A、B不重合,连接PA、PB,则∠APB的大小为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是(   )
A.30°B.30°或150°C.60°D.60°或120°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将一张半径为4的圆形纸片(如图①)连续对折两次后展开得折痕AB、CD,且AB⊥CD,垂足为M(如图②),之后将纸片如图③翻折,使点B与点M重合,折痕EF与AB相交于点N,连接AE、AF(如图④),则△AEF的面积是__________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题中,真命题是
A.没有公共点的两圆叫两圆外离;
B.相交两圆的交点关于这两个圆的连心线对称;
C.联结相切两圆圆心的线段必经过切点;
D.内含两圆的圆心距大于零.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为  .(填出一个正确的即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是(  )
A.当弦PB最长时,△APC是等腰三角形
B.当△APC是等腰三角形时,PO⊥AC
C.当PO⊥AC时,∠ACP=30°
D.当∠ACP=30°时,△BPC是直角三角形

查看答案和解析>>

同步练习册答案