分析 (1)根据角平分线的性质,可得∠ABF与∠FBC的关系,∠ACF与∠FCB的关系,根据平行线的性质,可得∠FBC与∠BFD的关系,∠FCB与∠EFC的关系,根据等腰三角形的判定,可得答案;
(2)根据等量代换,可得答案.
解答 证明:(1)∵∠ABC和∠ACB的平分线交于F点,
∴∠ABF=∠FBC,∠ACF=∠FCB.
∵DE∥BC,
∴∠FBC=∠BFD,∠FCB=∠EFC,
∴∠DBF=∠DFB,∠ECF=∠EFC,
∴DB=DF;
(2)由(1)证得DB=DF,同理EC=EF.
∵DE=DF+EF,
∴DE=BD+CE,
∵△ADE的周长=AD+DE+AE=AD+BD+CE+AE=AB+AC.
点评 本题考查了等腰三角形的判定与性质,平行线的性质,熟练掌握等腰三角形的判定与性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 3 | C. | 5 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com