精英家教网 > 初中数学 > 题目详情
如图,已知在矩形ABCD中,AB=6,BC=8,⊙E和⊙F分别是△ABC和△ADC的内切圆,与对角线AC分别切于E、F,则EF=
2
5
2
5
分析:连接EM、EN、EQ、AE、BE、CE、过F作FW⊥BC于W,过E作ER⊥FW于R,根据三角形的面积公式求出⊙E和⊙F的半径,在Rt△EFR中,根据勾股定理求出即可.
解答:解:
连接EM、EN、EQ、AE、BE、CE、过F作FW⊥BC于W,过E作ER⊥FW于R,
设⊙E的半径是R,
则EM=EN=EQ=RW=R,
∵四边形ABCD是矩形,
∴AB=CD=6,AD=BC=8,∠ABC=90°,
在Rt△ABC中,AB=6,BC=8,由勾股定理得:AC=10,
∵S△ABE+S△BCE+S△ACE=S△ABC
1
2
×6×R+
1
2
×8×R+
1
2
×10×R=
1
2
×6×8,
R=2,
同法可求出⊙F的半径是2,
在Rt△EFR中,ER=8-2-2=4,FR=6-2-2=2,由勾股定理得:EF=
42+22
=2
5

故答案为:2
5
点评:本题考查了三角形的内切圆和内心,三角形的面积公式,切线的性质,勾股定理,矩形的性质等知识点的综合应用,主要考查学生的推理能力和计算能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网自选题:
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E.
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在矩形ABCD中,AB=3,点E在BC上且∠BAE=30°,延长BC到点F使CF=BE,连接DF.
(1)判断四边形AEFD的形状,并说明理由;
(2)求DF的长度;
(3)若四边形AEFD是菱形,求菱形AEFD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在矩形ABCD中,AB=2,BC=4,四边形AFCE为菱形,求菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,D精英家教网E=3cm,BC=7cm.
(1)求证:△AEF≌△DCE;
(2)请你求出EF的长.

查看答案和解析>>

同步练习册答案