分析 如图,连接DF,AE,DE,取DF的中点O,连接OA、OE.以O为圆心画⊙O交CD于P3.只要证明∠EP1F=∠FP2F=∠FP3E=30°,即可推出FP1=4,FP2=8,FP3=4$\sqrt{3}$解决问题.
解答 解:如图,连接DF,AE,DE,取DF的中点O,连接OA、OE.以O为圆心画⊙O交CD于P3.
∵四边形ABCD是矩形,
∴∠BAD=∠B=90°,
∵BF=2,BE=2$\sqrt{3}$,AF=4,AD=4$\sqrt{3}$,
∴tan∠FEB=tan∠ADF=$\frac{\sqrt{3}}{3}$,
∴∠ADF=∠FEB=30°,
易知EF=OF=OD=4,
∴△OEF是等边三角形,
∴∠EP1F=∠FP2F=∠FP3E=30°,
∴FP1=4,FP2=8,FP3=4$\sqrt{3}$,
故答案为4或8或4$\sqrt{3}$.
点评 本题考查矩形的性质、锐角三角函数、圆的有关知识、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考填空题中的压轴题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com