16£®ÒÑÖªÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©¾­¹ýµãA£¨1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬3£©£®

£¨1£©ÇóÅ×ÎïÏߵıí´ïʽ¼°¶¥µãDµÄ×ø±ê£»
£¨2£©Èçͼ¼×£¬µãPÊÇÖ±ÏßBCÉÏ·½Å×ÎïÏßÉÏÒ»¶¯µã£¬¹ýµãP×÷yÖáµÄƽÐÐÏߣ¬½»Ö±ÏßBCÓÚµãE£¬ÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹Ï߶ÎPEµÄ³¤×î´ó£¿Èô´æÔÚ£¬Çó³öPE³¤µÄ×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÈçͼÒÒ£¬¹ýµãA×÷yÖáµÄƽÐÐÏߣ¬½»Ö±ÏßBCÓÚµãF£¬Á¬½ÓDA¡¢DBËıßÐÎOAFCÑØÉäÏßCB·½ÏòÔ˶¯£¬ËÙ¶ÈΪÿÃë1¸öµ¥Î»³¤¶È£¬Ô˶¯Ê±¼äΪtÃ룬µ±µãCÓëµãBÖغÏʱÁ¢¼´Í£Ö¹Ô˶¯£¬ÉèÔ˶¯¹ý³ÌÖÐËıßÐÎOAFCÓëËıßÐÎADBFÖصþ²¿·ÖÃæ»ýΪS£¬ÇëÇó³öSÓëtµÄº¯Êý¹Øϵʽ£®

·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃÅ×ÎïÏߵĽâÎöʽ£¬È»ºó»¯Îª¶¥µãʽ¼´¿ÉÇóµÃ¶¥µãµÄ×ø±ê£®
£¨2£©ÏÈÇóµÃÖ±ÏßBCµÄ½âÎöʽ£¬ÉèP£¨x£¬-x2+4x-3£©£¬ÔòF£¨x£¬x-3£©£¬¸ù¾ÝPFµÈÓÚPµãµÄ×Ý×ø±ê¼õÈ¥FµãµÄ×Ý×ø±ê¼´¿ÉÇóµÃPF¹ØÓÚxµÄº¯Êý¹Øϵʽ£¬´Ó¶øÇóµÃPµÄ×ø±êºÍPFµÄ×î´óÖµ£»
£¨3£©ÔÚÔ˶¯¹ý³ÌÖУ¬·ÖÈýÖÖÇéÐΣ¬ÐèÒª·ÖÀàÌÖÂÛ£¬±ÜÃ⩽⣮

½â´ð ½â£º£¨1£©Å×ÎïÏߵĽâÎöʽ£ºy=-x2+4x-3£¬
¡àÓÉy=-x2+4x-3=-£¨x-2£©2+1£¬¿ÉÖª£º¶¥µãDµÄ×ø±ê£¨2£¬1£©£®

£¨2£©´æÔÚ£®
ÉèÖ±ÏßBCµÄ½âÎöʽΪ£ºy=kx+b£¬
Ôò$\left\{\begin{array}{l}{3k+b=0}\\{b=-3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=1}\\{b=-3}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=x-3£¬
ÉèP£¨x£¬-x2+4x-3£©£¬ÔòF£¨x£¬x-3£©£¬
¡àPF=£¨-x2+4x-3£©-£¨x-3£©=-x2+3x=-£¨m-$\frac{3}{2}$£©2+$\frac{9}{4}$£¬
¡àµ±x=$\frac{3}{2}$ʱ£¬PEÓÐ×î´óֵΪ$\frac{9}{4}$£®
¡à´æÔÚÒ»µãP£¬Ê¹Ï߶ÎPEµÄ³¤×î´ó£¬×î´óֵΪ$\frac{9}{4}$£®

£¨3£©¡ßA£¨1£¬0£©¡¢B£¨3£¬0£©¡¢D£¨2£¬1£©¡¢C£¨0£¬-3£©£¬
¡à¿ÉÇóµÃÖ±ÏßADµÄ½âÎöʽΪ£ºy=x-1£»
Ö±ÏßBCµÄ½âÎöʽΪ£ºy=x-3£®
¡àAD¡ÎBC£¬ÇÒÓëxÖáÕý°ëÖá¼Ð½Ç¾ùΪ45¡ã£®
¡ßAF¡ÎyÖᣬ
¡àF£¨1£¬-2£©£¬
¡àAF=2£®
¢Ùµ±0¡Üt¡Ü$\sqrt{2}$ʱ£¬Èç´ðͼ1-1Ëùʾ£®

´ËʱËıßÐÎAFF¡äA¡äΪƽÐÐËıßÐΣ®
ÉèA¡äF¡äÓëxÖá½»ÓÚµãK£¬ÔòAK=$\frac{\sqrt{2}}{2}$AA¡ä=$\frac{\sqrt{2}}{2}$t£®
¡àS=S?AFF¡äA¡ä=AF•AK=2¡Á$\frac{\sqrt{2}}{2}$t=$\sqrt{2}$t£»
¢Úµ±$\sqrt{2}$£¼t¡Ü2$\sqrt{2}$ʱ£¬Èç´ðͼ1-2Ëùʾ£®

ÉèO¡äC¡äÓëAD½»ÓÚµãP£¬A¡äF¡äÓëBD½»ÓÚµãQ£¬
ÔòËıßÐÎPC¡äF¡äA¡äΪƽÐÐËıßÐΣ¬¡÷A¡äDQΪµÈÑüÖ±½ÇÈý½ÇÐΣ®
¡àS=S?PC¡äF¡äA¡ä-S¡÷A¡äDQ=2¡Á1-$\frac{1}{2}$£¨t-$\sqrt{2}$£©2=-$\frac{1}{2}$t2+$\sqrt{2}$t+1£»
¢Ûµ±2$\sqrt{2}$£¼t¡Ü3$\sqrt{2}$ʱ£¬Èç´ðͼ1-3Ëùʾ£®

ÉèO¡äC¡äÓëBD½»ÓÚµãQ£¬Ôò¡÷BC¡äQΪµÈÑüÖ±½ÇÈý½ÇÐΣ®
¡ßBC=3$\sqrt{2}$£¬CC¡ä=t£¬
¡àBC¡ä=3$\sqrt{2}$-t£®
¡àS=S¡÷BC¡äQ=$\frac{1}{2}$£¨3$\sqrt{2}$-t£©2=$\frac{1}{2}$t2-3$\sqrt{2}$t+9£®
¡à×ÛÉÏËùÊö£¬SÓëtµÄº¯Êý¹ØϵʽΪ£º
S=$\left\{\begin{array}{l}{\sqrt{2}t£¨0¡Üt£¼\sqrt{2}£©}\\{-\frac{1}{2}{t}^{2}+\sqrt{2}t+1£¨\sqrt{2}¡Üt£¼2\sqrt{2}£©}\\{\frac{1}{2}{t}^{2}-3\sqrt{2}t+9£¨2\sqrt{2}£¼t¡Ü3\sqrt{2}£©}\end{array}\right.$£®

µãÆÀ ±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌ⣬¿¼²éÁ˶þ´Îº¯ÊýµÄͼÏóÓëÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨Çó½âÎöʽ¡¢×îÖµ¡¢Æ½ÐÐËıßÐΡ¢µÈÑüÖ±½ÇÈý½ÇÐΡ¢Í¼ÐÎÃæ»ý¼ÆËãµÈ֪ʶµã£®×¢Òâ·ÖÀàÌÖÂÛµÄÊýѧ˼Ï뼰ͼÐÎÃæ»ýµÄ¼ÆËã·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÓÐËÄÕű³ÃæÍêÈ«ÏàͬµÄÖ½ÖÊ¿¨Æ¬£¬ÆäÕýÃæ·Ö±ð±êÓÐÊý×Ö£º6£¬$\sqrt{7}$£¬$\sqrt{11}$£¬-2£¬½«ËüÃDZ³Ã泯ÉÏÏ´ÔȺ󣬴ÓÖÐËæ»ú³éÈ¡Ò»ÕÅ¿¨Æ¬£¬³éµ½ÕýÃæµÄÊý±È3СµÄ¸ÅÂÊΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®»¯¼ò£º£¨$\frac{3a}{a+1}$-$\frac{a}{a+1}$£©•$\frac{{a}^{2}-1}{a}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ABΪ¡ÑOµÄÖ±¾¶£¬ÏÒBC£¬DEÏཻÓÚµãF£¬ÇÒDE¡ÍABÓÚµãG£¬¹ýµãC×÷¡ÑOµÄÇÐÏß½»DEµÄÑÓ³¤ÏßÓÚµãH£®
£¨1£©ÇóÖ¤£ºHC=HF£»
£¨2£©Èô¡ÑOµÄ°ë¾¶Îª5£¬µãFÊÇBCµÄÖе㣬tan¡ÏHCF=m£¬Ð´³öÇóÏ߶ÎBC³¤µÄ
˼·£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Òòʽ·Ö½â£ºa2b-ab+$\frac{1}{4}$b=b£¨a-$\frac{1}{2}$£©2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ä³Ð£¼×¡¢ÒÒ¡¢±û¡¢¶¡ËÄÃûͬѧÔÚÔ˶¯»áÉϲμÓ4¡Á100Ã×½ÓÁ¦±ÈÈü£¬ÆäÖм×ÅܵÚÒ»°ô£¬ÄÇôÒÒÅܵڶþ°ôµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{24}$B£®$\frac{1}{12}$C£®$\frac{1}{6}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®²»µÈʽ$\left\{\begin{array}{l}{3x-1¡Ü2}\\{x+2£¾0}\end{array}\right.$µÄ½â¼¯ÔÚÊýÖáÉϱíʾÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬µãE¡¢F·Ö±ðÔÚ±ßAB¡¢BCÉÏ£¬ÇÒAE=$\frac{1}{3}$AB=2£¬½«¾ØÐÎÑØÖ±ÏßEFÕÛµþ£¬µãBÇ¡ºÃÂäÔÚAD±ßÉϵĵãP´¦£¬Á¬½ÓBP½»EFÓÚµãQ£¬ÏÂÁнáÂÛ£º¢ÙEF=2BE£»¢Ú¡÷APE¡Õ¡÷QEB£»¢ÛFQ=3EQ£»¢ÜSBFPE=8$\sqrt{3}$£¬ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ¢Ù¢Ú¢Û£¨Ö»ÌîÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÎªÁËÅàÑøÆóÒµ½ÚԼˮԴ¡¢Í³³ïı»®µÄÒâʶ£¬Ð¡ÍõÏò×ÔÀ´Ë®¹«Ë¾¾­ÀíÌá³öÁËÒ»¸ö°´¼¾¶È½ÉÄÉË®·ÑµÄ·½°¸
Ô¾ùÓÃË®Á¿£¨t£©µ¥¼Û£¨Ôª/t£©
²»³¬¹ý30£¨t£©3
³¬¹ý30t²»³¬¹ý45t5
³¬¹ý45t²¿·Ö7
¸ù¾ÝÕâ¸ö·½°¸£¬¶ÔÒ»¼ÒÆóÒµµÄÓÃË®Á¿½øÐÐÁ˲âË㣺
£¨1£©ÉèÒ»¼¾¶ÈÔ¾ùÓÃË®Á¿Îªxt£¬¸Ã¼¾¶ÈÓ¦½ÉÄÉË®·ÑΪyÔª£¬Çó³öy¹ØÓÚxµÄº¯Êý¹Øϵʽ£»
£¨2£©Èç¹ûÒ»¼¾¶È½ÉÄÉË®·ÑΪ420Ôª£¬ÄÇô¸ÃÆóÒµÔ¾ùÓÃË®Á¿Îª¶àÉÙt£¿
£¨3£©¸ù¾ÝÔ¾ùÓÃË®Á¿¿ÉÖª£¬µÚ1tË®µÄµ¥¼ÛΪ3Ôª/t£¬µÚ2tË®µÄµ¥¼ÛΪ3Ôª/t£¬¡­£¬µÚ31tË®µÄµ¥¼ÛΪ5Ôª/t£¬µÚ32tË®µÄµ¥¼ÛΪ5Ôª/t£¬¡­£¬µÚ46tË®µÄµ¥¼ÛΪ7Ôª/t£¬µÚ47tË®µÄµ¥¼ÛΪ7Ôª/t£¬¡­£¬Óɴ˵õ½µÚmtË®µÄµ¥¼ÛÊý¾Ý£¨mΪÕýÕûÊý£©£¬ÈôʹÕâm¸öÊý¾ÝµÄÖÐλÊýΪ5£¨Ôª/t£©£¬Ö±½Óд³öm£¨t£©µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸