精英家教网 > 初中数学 > 题目详情

数学公式是一个


  1. A.
    整数
  2. B.
    分数
  3. C.
    有理数
  4. D.
    无理数
D
分析:根据无理数的定义即可作答.
解答:∵是一个无限不循环小数,
是一个无理数.
故选D.
点评:本题考查了无理数的定义:无限不循环小数为无理数.初中范围内学习的无理数有三类:①π类,如2π,等;②开方开不尽的数,如等;③虽有规律但是无限不循环的数,如0.1010010001…,等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读题:我国著名数学家华罗庚说过:“数缺形时少直观,形小数时难入微,数形结合百般好,隔离分家事万休.”数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.
例:求1+2+3+4+…+n的值,其中n是正整数;
如果采用数形结合的方法,现利用图形的性质来求1+2+3+4+…+n的值,方案如下:
如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3…n个小圆圈的个数恰好为所求式子1+2+3+4+…+n的值,为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2

①仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n为正整数(要求画出图形,写出结果即可)
②试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数(要求画出图形,写出结果即可)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在中央电视台第2套《购物街》栏目中,有一个精彩刺激的游戏--幸运大转盘,其规则如下:
①游戏工具是一个可绕轴心自由转动的圆形转盘,转盘按圆心角均匀划分为20等分,并在其边缘标记5、10、15、…、100共20个5的整数倍数,游戏时,选手可旋转转盘,待转盘停止时,指针所指的数即为本次游戏的得分;
②每个选手在旋转一次转盘后可视得分情况选择是否再旋转转盘一次,若只旋转一次,则以该次得分为本轮游戏的得分,若旋转两次则以两次得分之和为本轮游戏的得分;
③若某选手游戏得分超过100分,则称为“爆掉”,该选手本轮游戏裁定为“输”,在得分不超过100分的情况下,分数高者裁定为“赢”;
④遇到相同得分的情况,相同得分的选手重新游戏,直到分出输赢.
现有甲、乙两位选手进行游戏,请解答以下问题:
(1)甲已旋转转盘一次,得分65分,他选择再旋转一次,求他本轮游戏不被“爆掉”的概率.
(2)若甲一轮游戏最终得分为90分,乙第一次旋转转盘得分为85分,则乙还有可能赢吗赢的概率是多少
(3)若甲、乙两人交替进行游戏,现各旋转一次后甲得85分,乙得65分,你认为甲是否应选择旋转第二次说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2000•山西)某校为了解一个年级的学习情况,在这个年级抽取了50名学生,对某学科进行测试,将所得成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示.

请回答下列问题:
(1)这次测试90分以上的人数(包括90分)有
21
21
人;
(2)本次测试这50名学生成绩的及格率是
96
96
%(60分以上为及格,包括60分).
(3)这个年级此学科的学习情况如何?请你在下列给出的三个选项中,选一个把序号填在题后横线上.
A、好B、一般C、不好答:
A
A

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a1,a2,…,an是正整数,且a1≤a2≤…≤an,a1+a2+…+an=10,a12+a22+…+an2=24,则(a1,a2,…,an)=
(1,1,2,3,3)或(1,1,1,1,2,4)(对一个给3分)
(1,1,2,3,3)或(1,1,1,1,2,4)(对一个给3分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

任何一个正整数n都可以进行这样的分n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=
p
q
、例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)=
3
6
=
1
2
.给出下列关于F(n)的说法:(1)F(2)=
1
2
;(2)F(24)=
3
8
;(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有______.

查看答案和解析>>

同步练习册答案