精英家教网 > 初中数学 > 题目详情

是否存在一个有10个面、24条棱和18个顶点构成的棱柱?若存在,请指出是几棱柱;如果不存在,请说明理由.

解:由棱柱的特性可知:不存在一个有10个面、24条棱和18个顶点构成的棱柱.
因为有18个顶点构成的棱柱是九棱柱,它有9+2=11个面、3×9=27条棱.
分析:一个直棱柱有18个顶点,说明它的上下底面是两个九边形,从而可以确定它的面的个数.
点评:本题主要考查n棱柱的构造特点:(n+2)个面,3n条棱,2n个顶点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-(m2+5)x+2m2+6.
(1)求证:无论m为何值,抛物线与x轴必有两个交点,并且有一个交点必为A(2,0);
(2)设抛物线与x轴的另一个交点为B,记AB的长为d,求d与m之间的函数关系式;
(3)令d=10,问抛物线上是否存在点P,使△ABP为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

25、是否存在一个有10个面、24条棱和18个顶点构成的棱柱?若存在,请指出是几棱柱;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

实验与探究:在△ABC中,∠A、∠B、∠C所对应的边分别用a、b、c表示.

(1)如图1,在△ABC中,∠A=2∠B,且∠A=60°.易证:a2=b(b+c)
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.本题第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角△ABC,如图2,∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
归纳与发现
由以上的证明,可以得到关于倍角三角形的一个结论:一个三角形中有一个角等于另一个角的两倍,2倍角所对边的平方等于一倍角所对边乘该边与第三边的和.
运用与推广
(3)(2009年全国初中数学联赛)在△ABC中,最大角∠A是最小角∠C的2倍,且AB=7,AC=8.则BC=
C
C

(A)7
2
   (B)10   (C)
105
    (D)7
3

(4)是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

是否存在一个有10个面、24条棱和18个顶点构成的棱柱?若存在,请指出是几棱柱;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案