【题目】在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中A(1,1)、B(4,4)、C(5,1).
(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△A2B2C2,A、B、C的对应点分别是A2、B2、C2;
(3)连CB2,直接写出点B2、C2的坐标B2: 、C2: .
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,平行四边形的顶点的坐标分别是, ,点把线段三等分,延长分别交于点,连接, 则下列结论:; ③四边形的面积为;④,其中正确的有( ).
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线和直线外三点,按下列要求画图,填空:
(1)画射线;
(2)连接;
(3)延长至,使得;
(4)在直线上确定点,使得最小,请写出你作图的依据___________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们学过角的平分线的概念.类比给出新概念:从一个角的顶点出发,把这个角分成的两个角的射线,叫做这个角的三分线.显然,一个角的三分线有两条,例如:如图1,若,则是的一条三分线.
(1)如图1,若,若,求的度数;
(2)如图2,若,若是的两条三分线.
①求的度数;
②现以O为中心,将顺时针旋转度()得到,当恰好是的三分线时,则求的值.
(3)如图3,若,是的一条三分线,分别是与的平分线,将绕点以每秒的速度沿顺时针方向旋转一周,在旋转的过程中,若射线恰好是的三分线,则此时绕点旋转的时间是多少秒?(直接写出答案即可,不必说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①②③是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1)图①中△MON的面积=________;
(2)在图②③中以格点为顶点画出一个正方形ABCD,使正方形ABCD的面积等于(1)中△MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD的面积没有剩余(在图②、图③中画出的图形不能是全等形)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算与合并同类项:
(1)+4.7+(﹣4)﹣2.7﹣(﹣3.5)
(2)11÷(﹣22)﹣3×(﹣11)
(3)16+(﹣2)3+|﹣7|+()×(﹣4)
(4)0.25×(﹣2)2﹣[﹣4÷()2+1]÷(﹣1)2020
(5)5x4+3x2y﹣10﹣3x2y+x4﹣1
(6)(7y﹣3z)﹣(8y﹣5z)
(7)2(2a2+9b)+3(﹣5a2﹣6b)
(8)﹣3(2x2﹣xy)﹣4(x2﹣xy﹣6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有个填写运算符号的游戏:在“”中的每个□内,填入中的某一个(可重复使用),然后计算结果.
(1)计算:;
(2)若请推算□内的符号;
(3)在“”的□内填入符号后,使计算所得数最小,直接写出这个最小数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com