【题目】如图,矩形中,,点在上,且,连接,将矩形沿直线翻折,点恰好落在上的点处,则________.
A.9B.8C.7D.5
【答案】B
【解析】
由题意易证得△A′BC≌△DCE(AAS),BC=AD,A′B=AB=CD=15cm,然后设A′C=xcm,在Rt△A′BC中,由勾股定理可得BC2=A′B2+A′C2,即可得方程,解方程即可求得答案.
解:∵四边形ABCD是矩形,
∴AB=CD=15cm,∠A=∠D=90°,AD∥BC,AD=BC,
∴∠DEC=∠A′CB,
由折叠的性质,得:A′B=AB=15cm,∠BA′E=∠A=90°,
∴A′B=CD,∠BA′C=∠D=90°,
在△A′BC和△DCE中,
,
∴△A′BC≌△DCE(AAS),
∴A′C=DE,
设A′C=xcm,则BC=AD=DE+AE=x+9(cm),
在Rt△A′BC中,BC2=A′B2+A′C2,
即(x+9)2=x2+152,
解得:x=8,
∴A′C=8cm.
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,点是等边三角形内一点,将绕点 .按顺时针方向旋转得, 连接.
(1)求证:是等边三角形;
(2)当时, 试判断的形状,并说明理由;
(3)探究:当为多少度时,是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据图形及题意填空,并在括号里写上理由.
己知:如图,,平分.
试说明:.
解:因为平分(已知)
所以(角平分线的定义)
因为(已知)
所以∠_________=∠__________(________)
∠____________=∠_________(___________)
所以.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:
①打电话时,小东和妈妈的距离为1400米;
②小东和妈妈相遇后,妈妈回家速度为50m/min;
③小东打完电话后,经过27min到达学校;
④小东家离学校的距离为2900m.
其中正确的个数是( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将2×2的正方形网格如图所示的放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上,若直线y=kx(k≠0)与正方形ABCD有公共点,则k不可能是( )
A.3
B.2
C.1
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y= x于点B1 , B2 , 过点B2作y轴的平行线交直线y=x于点A2 , 过点A2作x轴的平行线交直线y= x于点B3 , …,按照此规律进行下去,则点An的横坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
在平面直角坐标系xOy中,点P(x0 , y0)到直线Ax+By+C=0的距离公式为:d= .
例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.
解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,
∴点P0(0,0)到直线4x+3y﹣3=0的距离为d= = .
根据以上材料,解决下列问题:
(1)点P1(3,4)到直线y=﹣ x+ 的距离为;
(2)已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣ x+b相切,求实数b的值;
(3)如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,张老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(﹣1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<<2,所以的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<<3,所以的小数部分就是(﹣2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:“已知8+=x+y,其中x是一个整数,且0<y<1,请你求出2x+(﹣y)2019的值”.请同样聪明的你给出正确答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠ABC=45°,点D是BC边上一动点(与点B,C不重合),点E与点D关于直线AC对称,连结AE,过点B作BF⊥ED的延长线于点F.
(1)依题意补全图形;
(2)当AE=BD时,用等式表示线段DE与BF之间的数量关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com