精英家教网 > 初中数学 > 题目详情
(2012•葫芦岛二模)如图,一副三角纸板拼在一起,O为AD的中点,AB=4,将△ABO沿BO对折于△A′BO,M为BC上一动点,则A′M的最小值为
6
-
2
6
-
2
分析:根据折叠的性质知AB=A′B=4;而O是Rt△ABD斜边AD的中点,则有AO=OB,由此可证得△ABO是等边三角形,那么∠A′BO=∠ABO=60°,进而可求出∠A′BM=15°;当A′M最小时,A′M⊥BC,此时△A′BM是直角三角形,取A′B的中点N,连接MN,那么∠A′NM=30°,A′N=MN=
1
2
A′B=
1
2
×4=2;过M作A′B的垂线,设垂足为H,在Rt△MNH中,根据∠A′NM的度数即可表示出NH,MH的长,进而可求出A′H的长,即可在Rt△A′MH中,根据勾股定理求出A′M的长.
解答:解:由折叠的性质知:AB=A′B=4,∠ABO=∠A′BO;
∵O是Rt△ABD斜边AD的中点,
∴OA=OB,即△ABO是等边三角形;
∴∠ABO=∠A′BO=60°;
∵∠ABD=90°,∠CBD=45°,
∴∠ABC=∠ABD+∠CBD=135°,
∴∠A′BM=135°-120°=15°;易知当A′M⊥BC时,A′M最短;
过M作MH⊥A′B于H,取A′B的中点N,连接MN,如图;
在Rt△A′BM中,N是斜边A′B的中点,则BN=NM=A′N=
1
2
×4=2,∠B=∠NMB=15°;
∴∠A′NM=30°;
∴MH=
1
2
MN=1,
∴NH=
MN2-NH2
=
3

∴A′H=A′N-NH=2-
3

由勾股定理得:A′M=
A′H2+HM2
=
(
6
-
2
)2
=
6
-
2

故答案为:
6
-
2
点评:此题主要考查了折叠的性质、直角三角形的性质以及勾股定理的应用,能够正确的构建出含特殊角的直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•葫芦岛二模)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)如果长春市有8万名初中生,持“无所谓”态度的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•葫芦岛二模)甲、乙两地相距50千米,图中折线表示某骑车人离甲地的距离y与时间x的函数关系.有一辆客车9点从乙地出发,以50千米/时的速度匀速行驶,并往返于甲、乙两地之间.(乘客上、下车停留时间忽略不计)
(1)从折线图可以看出,骑车人一共休息
次,共休息
2
2
小时;
(2)请在图中画出9点至15点之间客车与甲地的距离y随时间x变化的函数图象;
(3)通过计算说明,何时骑车人与客车第二次相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•葫芦岛二模)如图,已知点F的坐标为(3,0),点A、B分别是某函数图象与x 轴、y轴的交点,点P是此图象上的一动点,设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5-
3
5
x
(0≤x≤5).则结论:①OA=5;②OB=3;③AF=2;④BF=5中,结论正确的个数有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•葫芦岛二模)(1)计算:|-2
2
|-4sin30°+(3.14-π)0-
8

(2)已知:2a2+a-1=0,求(a+2)2-3(a-1)+(a+2)(a-2)的值.

查看答案和解析>>

同步练习册答案