精英家教网 > 初中数学 > 题目详情
14.如图,在?ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.
(1)求证:四边形CDEF是菱形;
(2)若AB=2,BC=3,∠A=120°,求BP的值.

分析 (1)利用平行四边形的性质和角平分线的定义可求得CF=CD=DE,可证得结论;
(2)过P作PG⊥BC于G,在Rt△PGC中可求得PG和CG的长,则可求得BG的长,在Rt△BPG中,由勾股定理可求得BP的长.

解答 (1)证明:
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠EDF=∠DFC,
∵DF平分∠ADC,
∴∠EDF=∠CDF,
∴∠DFC=∠CDF,
∴CD=CF,
∴四边形CDEF为平行四边形,
同理可得CD=DE,
∴四边形CDEF为菱形;
(2)解:
如图,过P作PG⊥BC于G,

∵AB=2,BC=3,∠A=120°,且四边形CDEF为菱形,
∴CF=EF=CD=AB=2,∠ECF=$\frac{1}{2}$∠BCD=$\frac{1}{2}$∠A=60°,
∴△CEF为等边三角形,
∴CE=CF=2,
∴PC=$\frac{1}{2}$CE=1,
∴CG=$\frac{1}{2}$PC=$\frac{1}{2}$,PG=$\frac{\sqrt{3}}{2}$PC=$\frac{\sqrt{3}}{2}$,
∴BG=BC-CG=3-$\frac{1}{2}$=$\frac{5}{2}$,
在Rt△BPG中,由勾股定理可得BP=$\sqrt{B{G}^{2}+P{G}^{2}}$=$\sqrt{(\frac{5}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}$=$\sqrt{7}$,
即BP的值为$\sqrt{7}$.

点评 本题主要考查平行四边形的性质及菱形的判定和性质,掌握菱形的判定方法是解题的关键,在求BP的值时注意构造直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.已知a+b=14,ab=48,求a2+b2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.
①如果AD=4,BD=9,那么CD=6;
②如果以CD的长为边长作一个正方形,其面积为S1,以BD,AD的长为邻边长作一个矩形,其面积为S2,则S1=S2(填“>”、“=”或“<”).
(2)基于上述思考,小泽进行了如下探究:
①如图2,点C在线段AB上,正方形FGBC,ACDE和EDMN,其面积比为1:4:4,连接AF,AM,求证AF⊥AM;
②如图3,点C在线段AB上,点D是线段CF的黄金分割点,正方形ACDE和矩形CBGF的面积相等,连接AF交ED于点M,连接BF交ED延长线于点N,当CF=a时,直接写出线段MN的长为$\frac{3-\sqrt{5}}{2}a$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取5次,记录如下:
8588848583
8387848685
(1)请你分别计算这两组数据的平均数;
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)化简4y2-(x2+y)+(x2-4y2
(2)求值$\frac{1}{4}$(-4x2+2x-8)-3($\frac{1}{2}$x-2),其中x=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线y=ax2+x+c(a≠0)经过点A(-1,0),B(2,0)两点,与y轴相交于点C,点D为抛物线的顶点.
(1)求抛物线的解析式及点D的坐标;
(2)△ABC的外接圆与抛物线的另一交点为E,直接写出E点的坐标;
(3)记△ABC得外接圆圆心为M,求圆心M的坐标;
(4)在x轴上有一点P,且∠EBO+∠MPO=α,当tanα=3时,求OP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系xOy中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(4,4),反比例函数y=$\frac{k}{x}$(x>0,k≠0)的图象经过线段BC的中点D,交正方形OABC的另一边AB于点E.
(1)求k的值;
(2)如图①,若点P是x轴上的动点,连接PE,PD,DE,当△DEP的周长最短时,求点P的坐标;
(3)如图②,若点Q(x,y)在该反比例函数的图象上运动(不与点D重合),过点Q作OM⊥y轴,垂足为M,作QN⊥BC所在直线,垂足为N,记四边形CMQN的面积为S,求S关于x的函数表达式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)-2×32+5
(1)-14-[1-(1-0.5×$\frac{1}{3}$)]×6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.
求证:AB=AC.

查看答案和解析>>

同步练习册答案