如图所示,C、D是线段AB的三等分点,且AD=4,求AB的长.
科目:初中数学 来源: 题型:解答题
如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.
解:∵EF∥AD(已知)
∴∠2= _________ ( )
又∵∠1=∠2(已知)
∴∠1=∠3( )
∴AB∥ _________ ( )
∴∠BAC+ _________ =180°( )
∵∠BAC=70°(已知)
∴∠AGD= _________ .
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,那么DG∥BC吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;
(3)若C在线段AB的延长线上,且满足AC-CB=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
推理填空:
如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD。理由如下:
∵ ∠1 =∠2(已知),且∠1 =∠4( ),
∴ ∠2 =∠4(等量代换),
∴ CE∥BF( ).
∴ ∠ =∠3( ).
又∵ ∠B =∠C(已知),
∴ ∠3 =∠B(等量代换),
∴ AB∥CD( ).
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)( )
A.4m | B.6m | C.8m | D.12m |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com