精英家教网 > 初中数学 > 题目详情

【题目】若关于x的不等式组 有且只有三个整数解,且关于x的分式方程 =﹣1有整数解,则满足条件的整数a的值为( )
A.15
B.3
C.﹣1
D.﹣15

【答案】C
【解析】解:不等式组整理得:

解集为: ≤x≤2,

由不等式组有且只有三个整数解,得到﹣1< ≤0,即﹣5<a≤0,

分式方程去分母得:x+a+1=2﹣x,

解得:x=

由分式方程有整数解,得到a=﹣1,﹣3,

∵x≠2,

∴a=﹣1,

故答案选C.

【考点精析】利用分式方程的解和一元一次不等式组的整数解对题目进行判断即可得到答案,需要熟知分式方程无解(转化成整式方程来解,产生了增根;转化的整式方程无解);解的正负情况:先化为整式方程,求整式方程的解;使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集(简称不等式组的解).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线 与x轴交于点A,与直线 y=kx-3交于点C(c,6),直线 与y轴交于点B,连接AB.
(1)求k的值;
(2)求证:∠CAO=∠BAO;
(3)P为OA上一点,连结PB,M为PB中点,延长MO交直线AC于点N,若OP=x, ,求y关于x的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;

(1)直接写出图中∠AOC的对顶角为   ,∠BOE的邻补角为   

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点F在线段AB上,点EG在线段CD上,FGAE,∠1=2

(1)求证:ABCD

(2)FGBC于点HBC平分∠ABD,∠D=112°,求∠1的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,将一块等腰直角三角形的直角顶点放在斜边的中点处,将三角板绕点旋转,三角板的两直角边分别交射线两点.如图①、②、③是旋转三角板得到的图形中的3种情况.

1)观察图①,当三角板绕点旋转到时,我们发现:__________.(选填“”、“”或“”)

2)当三角板绕点旋转到图②所示位置时,判断(1)题中之间的大小关系还存在吗?请你结合图②说明理由.

3)三角板绕点旋转,是否能成为等腰三角形?若能,指出所有情况(那写出为等腰三角形时的长);若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为4P是对角线BD上一点,PEBC于点EPFCD于点F,连接APEF.给出下列结论:①PDDF;②四边形PECF的周长为8;③APD一定是等腰三角形;④APEF.其中正确结论的序号为(

A.①②④B.①②C.①④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司有两种型号的客车共20辆,它们的载客量、每天的租金如下表所示.已知在20辆客车都坐满的情况下,共载客720人.

A型号客车

B型号客车

载客量(人/辆)

45

30

租金(元/辆)

600

450

(1)求两种型号的客车各有多少辆?

(2)某中学计划租用两种型号的客车共8辆,同时送七年级师生到沙家浜参加社会实践活动,已知该中学租车的总费用不超过4600元. 求最多能租用多少辆A型号客车?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家20181月和3月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度(  )

A. 0.5元、0.6 B. 0.4元、0.5 C. 0.3元、0.4 D. 0.6元、0.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD 中,对角线 AC BD 相交于点 O ,点 E F 分别为 OB OD 的中点,延长 AE G ,使 EG AE ,连接 CG

1)求证: ABE≌△CDF

2)当 AB AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.

查看答案和解析>>

同步练习册答案