精英家教网 > 初中数学 > 题目详情
数学课上,老师提出:
如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(1,0),点B在x轴上,且在点A的右侧,AB=OA,过点A和B作x轴的垂线,分别交二次函数y=x2的图象于点C和D,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的横坐标分别为xC、xD,点H的纵坐标为yH
同学发现两个结论:
①S△CMD:S梯形ABMC=2:3 ②数值相等关系:xC•xD=-yH
(1)请你验证结论①和结论②成立;
(2)请你研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,其他条件不变,结论①是否仍成立(请说明理由);
(3)进一步研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t>0)”,又将条件“y=x2”改为“y=ax2(a>0)”,其他条件不变,那么xC、xD与yH有怎样的数值关系?(写出结果并说明理由)
(1)由已知可得点B的坐标为(2,0),点C坐标为(1,1),点D的坐标为(2,4),
由点C坐标为(1,1)易得直线OC的函数解析式为y=x,
故点M的坐标为(2,2),
所以S△CMD=1,S梯形ABMC=
3
2

所以S△CMD:S梯形ABMC=2:3,
即结论①成立.
设直线CD的函数解析式为y=kx+b,
k+b=1
2k+b=4

解得
k=3
b=-2

所以直线CD的函数解析式为y=3x-2.
由上述可得,点H的坐标为(0,-2),yH=-2
因为xC•xD=2,
所以xC•xD=-yH
即结论②成立;

(2)(1)的结论仍然成立.
理由:当A的坐标(t,0)(t>0)时,点B的坐标为(2t,0),点C坐标为(t,t2),点D的坐标为(2t,4t2),
由点C坐标为(t,t2)易得直线OC的函数解析式为y=tx,
故点M的坐标为(2t,2t2),
所以S△CMD=t3,S梯形ABMC=
3
2
t3.
所以S△CMD:S梯形ABMC=2:3,
即结论①成立.
设直线CD的函数解析式为y=kx+b,
tk+b=t2
2tk+b=4t2

解得
k=3t
b=-2t2

所以直线CD的函数解析式为y=3tx-2t2
由上述可得,点H的坐标为(0,-2t2),yH=-2t2
因为xC•xD=2t2
所以xC•xD=-yH
即结论②成立;

(3)由题意,当二次函数的解析式为y=ax2(a>0),且点A坐标为(t,0)(t>0)时,点C坐标为(t,at2),点D坐标为(2t,4at2),
设直线CD的解析式为y=kx+b,
则:
tk+b=at2
2tk+b=4at2

解得
k=3at
b=-2at2

所以直线CD的函数解析式为y=3atx-2at2,则点H的坐标为(0,-2at2),yH=-2at2
因为xC•xD=2t2
所以xC•xD=-
1
a
yH
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-4x-4的图象与x轴、y轴分别交于A、C两点,抛物线y=
4
3
x2+bx+c的图象经过A、C两点,且与x轴交于点B.
(1)求抛物线的函数表达式;
(2)设抛物线的顶点为D,求四边形ABDC的面积;
(3)作直线MN平行于x轴,分别交线段AC、BC于点M、N.问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知点A(-1,0),B(0,1),C(2,
9
5
).
(Ⅰ)直线l:y=kx+b过A、B两点,求k、b的值;
(Ⅱ)求过A、B、C三点的抛物线Q的解析式;
(Ⅲ)设(Ⅱ)中的抛物线Q的对称轴与x轴相交于点E,那么在对称轴上是否存在点F,使⊙F与直线l和x轴同时相切?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴于点C,顶点为D,以BD为直径的⊙M恰好过点C.
(1)求顶点D的坐标(用a的代数式表示);
(2)求抛物线的解析式;
(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为点P,直线PC与x轴的交点D恰好与点A关于y轴对称.
(1)求p、q的值.
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.
(3)连接PA、AC.问:在直线PC上,是否存在这样点E(不与点C重合),使得以P、A、E为顶点的三角形与△PAC相似?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c,其中a>0,b2-4a2c2=0,它的图象与x轴只有一个交点,交点为A,与y轴交于点B,且AB=2.
(1)求二次函数解析式;
(2)当b<0时,过A的直线y=x+m与二次函数的图象交于点C,在线段BC上依次取D、E两点,若DE2=BD2+EC2,试确定∠DAE的度数,并简述求解过程.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c与x轴交于A、B两点(点B在点A的右侧,且AB=8),与y轴交于点C,其中点A在x轴的负半轴上,点C在y轴的正半轴上,线段OA、OC的长(OA<OC)是方程x2-14x+48=0的两个根.
(1)求此抛物线的解析式;
(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EFAC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,请解答下面的问题,并写出探索的主要过程:
(1)经过多少时间后,P、Q两点的距离为5
2
cm2
(2)经过多少时间后,S△PCQ的面积为15cm2
(3)请用配方法说明,何时△PCQ的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=x2+bx+c经过原点,且在x轴的正半轴上截得的线段长为4,对称轴为直线x=m.过点A的直线绕点A(m,0)旋转,交抛物线于点B(x,y),交y轴负半轴于点C,过点C且平行于x轴的直线与直线x=m交于点D,设△AOB的面积为S1,△ABD的面积为S2
(1)求这条抛物线的顶点的坐标;
(2)判断S1与S2的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案