精英家教网 > 初中数学 > 题目详情

【题目】有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.
(1)请画出树状图并写出(m,n)所有可能的结果;
(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.

【答案】
(1)解:画树状图得:

则(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3)


(2)解:∵所选出的m,n能使一次函数y=mx+n的图象经过第第二、三、四象限的有:(﹣3,﹣4),(﹣4,﹣3),

∴所选出的m,n能使一次函数y=mx+n的图象经过第第二、三、四象限的概率为: =


【解析】(1)事件分两步骤完成,第一步有4种情况,第2步有3种,共有43=12种;(2)图象经过第二、三、四象限要求m<0,,n<0,有2种,两者相除即可.
【考点精析】解答此题的关键在于理解概率公式的相关知识,掌握一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,延长线上一点,点上,且

1)求证:

2)若,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.

(1)求证:BC是⊙O的切线;
(2)连接AF、BF,求∠ABF的度数;
(3)如果BE=10,sinA= ,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB=90°,点A绕点O顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1 , AA2 , AA3…,依此作法,则∠AAnAn+1等于度.(用含n的代数式表示,n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在,,沿平移,且使点平移到,平移后的对应点分别为

1)写出两点的坐标;

2)画出平移后所得的;

3)五边形的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点的坐标满足:

1)求出点的坐标

2)如图1,连接,点在四边形外面且在第一象限,再连,则,求点坐标.

3)如图2所示,为线段上一动点,(在右侧)为上一动点,使轴始终平分,连,那么是否为定值?若为定值,请直接写出定值,若不是,请简单说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同,销售中发现A型汽车的每周销量yA(台)与售价x(万元/台)满足函数关系式yA=﹣x+20,B型汽车的每周销量yB(台)与售价x(万元/台)满足函数关系式yB=﹣x+14.
(1)求A、B两种型号的汽车的进货单价;
(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台.每周销售这两种车的总利润为W万元,求W与t的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明:

已知:如图,点 DEF 分别在线段 ABBCAC 上,连接 DEEFDM 平分∠ADE EF 于点 M,∠1+2=180° 求证:∠B =BED

证明:∵∠1+∠2=180°(已知),

∵∠1+∠BEM=180°(平角定义),

∴∠2=∠BEM ),

DM ).

∴∠ADM =∠B ),

MDE =∠BED ).

DM 平分ADE (已知)

∴∠ADM =∠MDE (角平分线定义)

∴∠B =∠BED ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交ACAB边于EF若点DBC边的中点,点M为线段EF上一动点,则周长的最小值为  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

同步练习册答案