精英家教网 > 初中数学 > 题目详情

已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.
(1)若正方形ABCD的边长为4,求△ACP的面积;
(2)求证:CP=BM+2FN.

解:∵∠1=∠2=22.5°,又CP⊥CF,
∴∠3+∠FCD=∠1+∠FCD=90°
∴∠3=∠1=22.5°
∴∠P=67.5°
又四边形ABCD为正方形,
∴∠ACP=45+22.5=67.5°
∴∠P=∠ACP
∴AP=AC
又AC=AB=4
∴AP=4
∴S△APC=AP•CD=4×4=8

(2)∵在△PDC和△FBC中,

∴△PDC≌△FBC
∴CP=CF
在CN上截取NH=FN,连接BH
∵FN=NH,且BN⊥FH
∴BH=BF
∴∠4=∠5
∴∠4=∠1=∠5=22.5°
又∠4+∠BFC=∠1+∠BFC=90°
∴∠HBC=∠BAM=45°
在△AMB和△BHC中,

∴△AMB≌BHC,
∴CH=BM
∴CF=BM+2FN
∴CP=BM+2FN.
分析:(1)根据等角对等边易证AP=AC,根据勾股定理求得AC的长,然后根据三角形的面积公式即可求解;
(2)易证△PDC≌△FBC则CP=CF,在CN上截取NH=FN,连接BH,则可以证明△AMB≌BHC,得到CH=BM,即可证得.
点评:本题是正方形的性质,全等三角形的判定与性质以及勾股定理的综合应用,正确作出辅助线是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为2,△BPC是等边三角形,则△CDP的面积是
 
;△BPD的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,已知正方形ABCD与正方形DEFG,点A、D、E三点共线,则S△ADG
=
=
S△DCE(填“>”,“<”或“=”)
(2)如图2,将图1中正方形DEFG绕点D,逆时针转到如图的位置,则S△ADG
=
=
S△DCE(填“>”,“<”或“=”)
请说明理由.
(3)如图3,以△ABC三边向外作三个正方形,分别为正方形AEDC、正方形CFGB正方形ABHK,并且△ABC的边AC长为5,边AB长为4,则三角形AKE,三角形CDF,三角形BGH的面积和的最大值为
30
30

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长为1,点E是射线DA一动点(DE>1),连结BE,以BE为边在BE上方作正方形BEFG,设M为正方形BEFG的中心,如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图中的一个损矩形并简单说明理由.
(2)连接AM,无论点E位置怎样变化,求证:DB∥AM.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

已知正方形ABCD如图,把它饶点O按逆时针方向旋转,请画出旋转后的图形。

 

查看答案和解析>>

同步练习册答案