A. | 1:3 | B. | 1:5 | C. | 1:6 | D. | 1:11 |
分析 根据平行四边形的性质可知BO=DO,又因为E为OD的中点,所以DE:BE=1:3,根据相似三角形的性质可求出S△DEF:S△BAE.然后根据$\frac{{S}_{△AOB}}{{S}_{△ABE}}$=$\frac{2}{3}$,即可得到结论.
解答 解:∵O为平行四边形ABCD对角线的交点,
∴DO=BO,
又∵E为OD的中点,
∴DE=$\frac{1}{4}$DB,
∴DE:EB=1:3,
又∵AB∥DC,
∴△DFE∽△BAE,
∴$\frac{{S}_{△DEF}}{{S}_{△BAE}}$=($\frac{1}{3}$)2=$\frac{1}{9}$,
∴S△DEF=$\frac{1}{9}$S△BAE,
∵$\frac{{S}_{△AOB}}{{S}_{△ABE}}$=$\frac{2}{3}$,
∴S△AOB=$\frac{2}{3}$S△BAE,
∴S△DEF:S△AOB=$\frac{\frac{1}{9}{S}_{△BAE}}{\frac{2}{3}{S}_{△BAE}}$=1:6,
故选C.
点评 题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.
科目:初中数学 来源: 题型:选择题
A. | (2,5) | B. | (5,2) | C. | (2,-5) | D. | (5,-2) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com