精英家教网 > 初中数学 > 题目详情

将奇数依顺序排列成如图所示的三角形数阵,从上到下称为行.图中数11为第3行、从左向右数的第2个数;数29为第4行、第6个数.那么,2003为第________行、第________个数.

32    41
分析:通过观察分析可发现:第1个奇数为1,第2个奇数为3,第3个奇数为5…,第k个奇数为2k-1,前k个奇数之和为1+3+5+…+(2k-1)=k2,于是第k行第1个奇数为2【(k-1)2+1】-1=2(K-1)2+1.根据2×312<2×322+1,可判断2003位于第32行上.根据1923~2003共有41个奇数,可判断2003是第41个数.
解答:第1个奇数为1,第2个奇数为3,第3个奇数为5…,第k个奇数为2k-1,
前k个奇数之和为1+3+5+…+(2k-1)=k2
于是,在如图所示的三角形数阵中,前k行共有k2个奇数,前k-1行共有(k-1)2个奇数,
于是第k行第1个奇数为2【(k-1)2+1】-1=2(K-1)2+1.
现在312=961,322=1024,2×312<2×322+1,
故2003位于第32行上.
由于第32行上第1个数为2×312+1=1923,
1923~2003共有+1=41个奇数,
因此,2003为第32行,第41个数.
故答案为32;41
点评:此题主要考查学生对数字有规律变化的理解和掌握,解答此题的关键是通过对题目中给出的图形,数据,数阵等进行分析,总结归纳出规律,此类题目一般难度偏大,属于难题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网将奇数依顺序排列成如图所示的三角形数阵,从上到下称为行.图中数11为第3行、从左向右数的第2个数;数29为第4行、第6个数.那么,2003为第
 
行、第
 
个数.

查看答案和解析>>

同步练习册答案