精英家教网 > 初中数学 > 题目详情
在直角三角形ABC中,,是斜边AB的中点,过,连结;过,连结;过,…,如此继续,可以依次得到点,…,,分别记,,,…,的面积为,,,…,则.

 
SABC

试题分析:由于,是斜边AB的中点, ,易知D1E1∥BC,
∴△BD1E1与△CD1E1同底同高,面积相等,以此类推;
∴S1=SD1E1A=SABC,
根据直角三角形的性质以及相似三角形的性质可知:D1E1=BC,CE1=AC,S1=SABC
∴在△ACB中,D2为其重心,
又D1E1为三角形的中位线,∴D1E1∥BC,
∴△D2D1E1∽△CD2B,且相似比为1:2,
=,
∴D2E1=BE1,
∴D2E2=BC,CE2=AC,S2=SABC,
∴D3E3=BC,CE3=AC,S3=SABC…;
∴Sn=SABC
故答案是SABC
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

理解与应用
小明在学习相似三角形时,在北京市义务教育课程改革实验教材第17册书,第37页遇到这样一道题:

如图1,在△ABC中,P是边AB上的一点,联结CP.
要使△ACP∽△ABC,还需要补充的一个条件是____________,或_________.
请回答:
(1)小明补充的条件是____________________,或_________________.
(2)请你参考上面的图形和结论,探究、解答下面的问题:
如图2,在△ABC中,∠A=60°,AC2= AB2+AB.BC.求∠B的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:
(1)如图1,将三角板的直角顶点P在射线OM上移动,两直角边分别与OA,OB交于点C,D.

①比较大小:PC______PD. (选择“>”或“<”或“=”填空);
②证明①中的结论.
(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OA交于点C,且OC=1,另一直角边与直线OB,直线OA分别交于点D,E,当以P,C,E为顶点的三角形与△OCD相似时,试求的长.(提示:请先在备用图中画出相应的图形,再求的长).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形OABC中,OA∥BC,A、B两点的坐标分别为A(13,0),B(11,12),动点P,Q分别从O、B两点同时出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,设动点P、Q运动时间为t(单位:s)

(1)当t为何值时,四边形PABQ是平行四边形,请写出推理过程;
(2)通过推理论证:在P、Q的运动过程中,线段DE的长度不变;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知.如图,点D、E分别是在AB,AC上,.求证:DE∥BC

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

观察计算:
时,的大小关系是_________________.
时,的大小关系是_________________.
探究证明:
如图所示,为圆O的内接三角形,为直径,过C作于D,设,BD=b.

(1)分别用表示线段OC,CD­;
(2)探求OC与CD表达式之间存在的关系(用含a,b的式子表示).
归纳结论:
根据上面的观察计算、探究证明,你能得出的大小关系是:______________.
实践应用:
要制作面积为4平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

,则(     )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

,则=__________.

查看答案和解析>>

同步练习册答案