精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC是等边三角形,D是BC的中点.
(1)作图: ①过B作AC的平行线BH;
②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G.
(2)在图中找出一对全等的三角形,并证明你的结论.

【答案】
(1)解:作图如下:①如图1;

②如图2:


(2)解:△DEC≌△DFB

证明:∵BH∥AC,

∴∠DCE=∠DBF,

又∵D是BC中点,

∴DC=DB.

在△DEC与△DFB中,

∴△DEC≌△DFB(ASA)


【解析】(1)根据平行线及垂线的作法画图即可;(2)根据ASA定理得出△DEC≌△DFB即可.
【考点精析】解答此题的关键在于理解等边三角形的性质的相关知识,掌握等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtACB中,∠ACB=90°,点DAB的中点,点ECD的中点,过点CCFABAE的延长线于点F

1)求证:△ADE≌△FCE

2)若∠DCF=120°,DE=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.
(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%;
(2)将条形统计图补充完整;
(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数图象的顶点在原点O,经过点A(1, );点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.

(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=CD,AB∥CD,点E、F在线段BD上,且BE=DF,连接AE、CF.

(1)指出线段AE与CF的关系,并说明理由;

(2)若将题中的条件“点E、F在线段BD上”改为“点E、F在直线BD上” ,那么(1)中的结论还一定能成立吗?若能,直接写出结论;若不能,请举出反例加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】判断正误,并说明理由(1)给定一组数据,那么这组数据的众数有可能不唯一________;理由________(2)给定一组数据,那么这组数据的平均数一定是这组数据中的一个数________;

理由________(3)n个数的中位数一定是这n个数中的某一个________;理由________(4)9个数据(x1、x2、……、x9其平均数为m)的标准差S, 计算公式为: ________;理由________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由点P(14,1),A(a,0),B(0,a)确定的△PAB的面积为18.

(1)如图,若0<a<14,求a的值.

(2)如果a>14,请画图并求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于C(0,3),顶点为D(1,4),对称轴为DE.

(1)抛物线的解析式是
(2)如图(2),点P是AD上一个动点,P′是P关于DE的对称点,连接PE,过P′作P′F∥PE交x轴于F.设S四边形EPP′F=y,EF=x,求y关于x的函数关系式,并求y的最大值;
(3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在.请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )

A.
B.4
C.
D.5

查看答案和解析>>

同步练习册答案