【题目】如图,在平面直角坐标系中,正方形ABCD和正方形EFGC面积分别为64和16.
(1)请写出点A,E,F的坐标;
(2)求S△BDF.
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度得到△DEC,点A、B的对应点分别是D、E.
(1)当点E恰好在AC上时,如图1,求∠ADE的大小;
(2)若=60°时,点F是边AC中点,如图2,求证:DF=BE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程(k﹣2)2x2+(2k+1)x+1=0有实数解,且反比例函数y=的图象经过第二、四象限,若k是常数,则k的值为( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个转盘,转盘被平均分成4等分,即被分成4个大小相等的扇形,4个扇形分别标有数字2、3、4、6,指针的位置固定,转动转盘后任其自由停止,每次指针落在每个扇形的机会均等(若指针恰好落在分界线上则重转).
(1)若图中标有“2”的扇形至少绕圆心旋转n度能与标有“3”的扇形的起始位置重合,求n的值;
(2)现有一张电影票,兄弟俩商定通过转盘游戏定输赢(赢的一方先得).游戏规则是:姐妹俩各转动一次转盘,两次转动后,若指针所指扇形上的数字之和为小于8,则哥哥赢;若指针所指扇形上的数字之和不小于8,则弟弟赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2﹣x+与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求该抛物线的对称轴和线段AB的长;
(2)如图1,已知点D(0,﹣),点E是直线AC上访抛物线上的一动点,求△AED的面积的最大值;
(3)如图2,点G是线段AB上的一动点,点H在第一象限,AC∥GH,AC=GH,△ACG与△A′CG关于直线CG对称,是否存在点G,使得△A′CH是直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为,剩下的水量为.下面能反映与之间的关系的大致图象是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A(-t,0)、B(0,t),其中t>0,点C为OA上一点,OD⊥BC于点D,且∠BCO=45°+∠COD
(1) 求证:BC平分∠ABO
(2) 求的值
(3) 若点P为第三象限内一动点,且∠APO=135°,试问AP和BP是否存在某种确定的位置关系?说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两直线 OM 与 ON 垂直,点 A,B 分别在射线 OM,ON 上移动,BC 平分∠DBO,BC 与∠OAB 的平分线 AC 交于点 C.
(1)若∠BAO=60°,求∠C 的度数;
(2)若∠BAO 的度数为 x 度,求∠C 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且.
(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF
以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式; ②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、
N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com