精英家教网 > 初中数学 > 题目详情
30、如图所示,以△ABC的三边为边,分别作三个等边三角形.
(1)求证四边形ADEF是平行四边形;
(2)△ABC满足什么条件时,四边形ADEF是菱形是矩形?
(3)这样的平行四边形ADEF是否总是存在?
分析:(1)易证△DBE≌△ABC,即可证得DE=AC=AF,同理可证得DA=EF那么四边形ADEF是平行四边形.
(2)由于平行四边形的邻边等于△ABC的AB或AC,所以应让AB=AC.
(3)平行四边形要想成立,相邻的三点应构成三角形,看是否存在在一条直线上的情况.
解答:(1)证明:∵△ABD,△BCE,△ACF都是等边三角形,
∴AB=BD=AD,∠ABD=∠EBC=∠BCE=∠ACF=60°,
BC=BE=CE,AC=AF=FC.
∵∠ABD=∠EBC=60°,
∴∠ABD-∠ABE=∠EBC-∠ABE.
∴∠DBE=∠ABC,
∴△DBE≌△ABC,
∴DE=AC.
∵AC=AF,
∴DE=AF.
同理可得,△EFC≌△BAC,
得EF=AB,
∴EF=AD,
∴四边形ADEF是平行四边形.

(2)解:当AB=AC时,四边形ADEF是菱形.理由如下:
∵AB=AD,AF=AC,
又AB=AC,
∴AD=AF.
又∵四边形ADEF为平行四边形,
∴平行四边形ADEF是菱形.
当∠BAC=150°时,四边形ADEF是矩形.
理由如下:
∵∠BAD=∠CAF=60°,∠BAC=150°,∠BAD+∠CAF+∠BAC+∠DAF=360°,
∠DAF=90度.
又∵四边形ADEF是平行四边形,
∴四边形平行四边形ADEF是矩形.

(3)当∠BAC=60°时,不存在这样的平行四边形ADEF.理由如下:
∵当∠BAC=60°时,
有∠DAF=60°+60°+60°=180°,
即D,A,F三点在同一直线上时,不存在这样的平行四边形ADEF.
点评:当两个或两个以上等边三角形出现时,要利用等边三角形的边和角相等证得相应的三角形全等.用到的知识点为:一组邻边相等的平行四边形是菱形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

29、如图所示,以△ABC的三边为边在BC的同侧分别作三个等边三角形△ABD、△BCE、△ACF,猜想:四边形ADEF是什么四边形,试证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图所示,以△ABC的三边为边,在BC的同侧分别作等边△ABD、△BCE、△ACF.
(1)你认为四边形ADEF是什么四边形?写出你的猜想并说明理由.
(2)当△ABC满足什么条件时,四边形ADEF成为矩形?(写出条件,不要求证明)
(3)当△ABC满足什么条件时,四边形ADEF成为菱形?(写出条件,不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,以△ABC的三边为边在BC的同侧作正三角形BCE,正三角形ABF和正三角形ACD,已知BC=3,高AH=1,则五边形BCDEF的面积是
 

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

(1)如图①所示,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由。

                 ①                                  ②
 (2)园林小路,曲径通幽,如图②所示,小路由白色的正方形大理石和黑色的三角形大理石铺成,已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是6平方米,这条小路一共占地多少平方米?

查看答案和解析>>

同步练习册答案