精英家教网 > 初中数学 > 题目详情
如图,C是线段AB上一动点,分别以AC、BC为边作等边△ACD.等边△BCE,连接AE、BD分别交CD、CE于M、N两.
(1)求证:AE=BD;
(2)判断直线MN与AB的位置关系;
(3)若AB=10,当点C在AB上运动时,是否存在一个位置使MN的长最大?若存在请求出此时AC的长以及MN的长.若不存在请说明理由.

【答案】分析:(1)根据等边三角形的性质可得DC=AC,EC=BC,∠DCB=∠ACE=120°,然后利用“边角边”证明△DCB和△ACE全等,再根据全等三角形对应边相等证明即可;
(2)根据全等三角形对应角相等求出∠NBC=∠MEC,再求出∠NCB=∠MCE=60°,然后利用“角边角”证明△NCB和△MCE全等,根据全等三角形对应边相等可得CN=CM,从而求出△CMN是等边三角形,根据等边三角形的性质可得∠NMC=∠ACD=60°,然后利用内错角相等,两直线平行即可证明;
(3)设AC=x,MN=y,根据平行线分线段成比例定理可得=,再表示出EC、CN、EN,整理得到y、x的函数关系式,再根据二次函数的最值问题解答.
解答:(1)证明:∵△ACD和△BCE均为等边三角形,
∴DC=AC,EC=BC,且∠DCB=∠ACE=120°,
∵在△DCB和△ACE中,

∴△DCB≌△ACE(SAS),
∴AE=BD;

(2)MN∥AB.
理由如下:由(1)可知△DCB≌△ACE,
∴∠NBC=∠MEC,
又∵∠MCE=180°-60°-60°=60°,
∴∠NCB=∠MCE=60°,
∵在△NCB和△MCE中,

∴△NCB≌△MCE(ASA),
∴CN=CM,
又∵∠MCE=60°,
∴△CMN是等边三角形,
∴∠NMC=∠ACD=60°,
∴MN∥AB;

(3)设AC=x,MN=y,
∵MN∥AB,
=
又∵CB=EC=10-x,CN=y,EN=10-x-y,
=
整理得,y=-x2+x,
配方得y=-(x-5)2+2.5(0<x<10),
∴当x=5cm时,线段MN有最大值2.5cm.
点评:本题考查了平行线分线段成比例定理,等边三角形的判定与性质,全等三角形的判定与性质,二次函数的最值问题,综合性较强,难度较大,准确识图,找出全等三角形的条件是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,C是线段AB上一点,M是AC的中点,N是BC的中点
(1)若AM=1,BC=4,求MN的长度.
(2)若AB=6,求MN的长度.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,C是线段AB上一点,分别以AC、BC为边在线段AB同侧作正方形ACDE和BCFG,连接AF、BD.
(1)AF与BD是否相等,为什么?
(2)如果点C在线段AB的延长线上,(1)中的结论是否成立?请作图,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,D是线段AB上的点,以BD为直径作⊙O,AP切⊙O于E,BC⊥AF于C,连接DE精英家教网、BE.
(1)求证:BE平分∠ABC;
(2)若D是AB中点,⊙O直径BD=3
3
,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,D是线段AB上的一点,BD=2AD=4,以BD为直径作半圆O,过点A作半圆O的切线,切点为E,过点B作BC⊥AE于C交半圆于F,连接EF.有下列四个结论:
①∠A=30°;②BF=3CF;③
DE
=
EF
;④EF∥AB.
其中正确的结论是
①③④
①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形.
(1)求证:AE=BD;
(2)若AE交CD于M,BD交CE于N,连接MN,试判断△MCN的形状,并说明理由.

查看答案和解析>>

同步练习册答案