精英家教网 > 初中数学 > 题目详情
已知一元二次方程x2-4x+k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0和x2+mx-1=0有一个相同的根,求此时m的值.
(3)是否存在k的值使方程x2-4x+k=0的两根x1、x2满足
x1
x2
+
x2
x1
=6
?若存在,求出k的值;不存在,说明理由.
分析:(1)根据方程有两个不相等的实数根可得出△>0,求出k的取值范围即可;
(2)由(1)中k的取值范围得出k的最大整数解,代入一元二次方程x2-4x+k=0中求出x的值,再根据两方程有一个相同的根即可求出m的值;
(3)根据根与系数的关系得出x1•x2及x1+x2的值,代入所求代数式得出k的值,再看k的值是否满足(1)中k的取值范围即可.
解答:解:(1)∵一元二次方程x2-4x+k=0有两个不相等的实数根,
∴△=(-4)2-4k>0,
∴k<4;

(2)∵k<4,
∴k的最大整数值是3,
∴一元二次方程x2-4x+k=0可化为x2-4x+3=0,
∴x1=3,x2=1,
∵一元二次方程x2-4x+k=0和x2+mx-1=0有一个相同的根,
∴当相同的实数根是3时,
32+3m-1=0,解得m=-
8
3

当相同的实数根是1时,
12+m-1=0,解得m=0.
故m=-
8
3
或0;

(3)设方程x2-4x+k=0的两根x1、x2,则x1•x2=k;x1+x2=4,
假设x1、x2满足
x1
x2
+
x2
x1
=6
,则
x12+x22
x1x2
=6,即
(x1 +x2)2-2x1x2
x1x2
=6,
把x1•x2=k;x1+x2=4代入得,
16-2k
k
=6,解得k=2,
由(1)可知,k<4,故k=2符合条件,
故存在符合条件的k的值,此时k=2.
点评:本题考查的是根与系数的关系及根的判别式,在解答此题时要熟知熟知一元二次方程y=ax2+bx+c中,
①当△>0时,方程有两个不相等的两个实数根;
②x1+x2=-
b
a
,x1x2=
c
a
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知一元二次方程x2+px+3=0的一个根为-3,则p=
4

查看答案和解析>>

科目:初中数学 来源: 题型:

19、已知一元二次方程x2+mx+3=0的一根是1,求该方程的另一根与m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知一元二次方程x2-mx-6=0的一个根是x=-3,则实数m的值为
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知一元二次方程x2-5x-3k=0有一根为-3,求k及方程的另一根.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一元二次方程x2-6x-5=0的两根为a、b,则
1
a
+
1
b
的值是
 

查看答案和解析>>

同步练习册答案