【题目】我们知道、可以借助于函数图象求方程的近似解,如图(甲),把方程x﹣2=1﹣x的解看成函数y=x﹣2的图象与函数y=1﹣x的图象的交点的横坐标,求得方程x﹣2=1﹣x的解为x=1.5,如图(乙),已画出了反比例函数y在第一象限内的图象,借助于此图象求出方程x2﹣x0的正数解.(要求画出相应函数的图象,结果精确到0.1)
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,E为CD边上一点,且AE、BE分别平分∠DAB、∠ABC.
(1)求证:△ADE≌△BCE;
(2)已知AD=3,求矩形的另一边AB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国庆期间某旅游点一家商铺销售一批成本为每件50元的商品,规定销售单价不低于成本价,又不高于每件70元,销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).
(1)请直接写出y关于x之间的关系式 ;
(2)设该商铺销售这批商品获得的总利润(总利润=总销售额一总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?
(3)若该商铺要保证销售这批商品的利润不能低于400元,求销售单价x(元)的取值范围是 .(可借助二次函数的图象直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F.
(1)求证:AE=AF;
(2)若AE=5,AC=4,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将△ABC绕点A逆时针旋转α得到△ADE,ED的延长线与BC相交于点F,连接AF、EC.
(1)如图,若∠BAC=α=60°.
①证明:AB∥EC;
②证明:△DAF∽△DEC;
(2)如图,若∠BAC<α,EF交AC于G点,图中有相似三角形吗?如果有,请直接写出所有相似三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.
(1)如图1,当k=1时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥x轴,连接OP,OA,记△OPA的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.
①求k的值以及w关于t的表达式;
②若用wmax和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,坡面CD的坡比为,坡顶的平地BC上有一棵小树AB,当太阳光线与水平线夹角成60°时,测得小树的在坡顶平地上的树影BC=3米,斜坡上的树影CD=米,则小树AB的高是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:
(1)求本次调查的样本容量;
(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;
(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com