【题目】为加快建设经济强、环境美、后劲足、群众富的实力微山,魅力微山,活力微山,幸福微山;聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶甲、乙两贫困村的计划,现决定从某地运送1225箱鱼苗到甲、乙两村养殖.若用大、小货车共20辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力和其运往甲、乙两村的运费如表:
车型 | 载货能力(箱/辆) | 运费 | |
甲村(元/辆) | 乙村(元/辆) | ||
大货车 | 70 | 800 | 900 |
小货车 | 35 | 400 | 600 |
(1)求这20辆车中大、小货车各多少辆?
(2)现安排其中16辆货车前往甲村,其余货车前往乙村,设前往甲村的大货车为x辆,前往甲、乙两村总费用为y元,试求出y与x的函数解析式及x的取值范围;
(3)在(2)的条件下,若运往甲村的鱼苗不少于980箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
【答案】
(1)解:设大货车用x辆,小货车用y辆,
,得 ,
答:大货车用15辆,小货车用5辆;
(2)解:由题意可得,
y=800x+900(15﹣x)+400(16﹣x)+600[5﹣(16﹣x)]=100x+13300(11≤x≤15且x为整数),
即y与x的函数解析式是:y=100x+13300(11≤x≤15且x为整数);
(3)解:由题意可得,
70x+35(16﹣x)≥980,
解得,x≥12,
又∵11≤x≤15且x为整数,
∴12≤x≤15且x为整数,
∵y=100x+13300,
∴当x=12时,y取得最小值,此时y=14500,
答:总费用最少的货车调配方案是12辆大货车、4辆小货车前往甲村,3辆大货车、1辆小货车前往乙村,最少费用为14500元.
【解析】(1)设大货车用x辆,小货车用y辆,然后依据共20辆车,共运送1225箱列方程组求解即可;
(2)先用含x的式子表示出去甲、乙两地的大小货车的辆数,然后根据题意和表格中的数据列出y与x的函数关系式即可;
(3)根据运往甲村的鱼苗不少于980箱和(2)中的函数解析式可以求得x的取值范围,然后依据一次函数的性质可得到y的最小值.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线相交于点O,点O也是正方形A′B′C′O的一个顶点,如果两个正方形的边长都等于1,那么正方形A′B′C′O绕顶点O转动,两个正方形重叠部分的面积大小有什么规律?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点Bn的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc<0;②9a+3b+c=0;③4ac﹣b2<2a;④2b=3a.
其中正确的结论是( )
A.①③
B.②④
C.①④
D.②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:
第一次 | 第二次 | 第三次 | 第四次 | |
甲 | 87 | 95 | 85 | 93 |
乙 | 80 | 80 | 90 | 90 |
据上表计算,甲、乙两名同学四次数学测试成绩的方差分别为S甲2=17、S乙2=25,下列说法正确的是( )
A.甲同学四次数学测试成绩的平均数是89分
B.甲同学四次数学测试成绩的中位数是90分
C.乙同学四次数学测试成绩的众数是80分
D.乙同学四次数学测试成绩较稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直角∠EPF的顶点和正方形ABCD的顶点C重合,两直角边PE,PF分别和AB,AD所在的直线交于点E和F.易得△PBE≌△PDF,故结论“PE=PF”成立;
(1)如图2,若点P在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?说明理由;
(2)如图(3)将(2)中正方形ABCD改为矩形ABCD其他条件不变,若AB=m,BC=n,直接写出 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com