精英家教网 > 初中数学 > 题目详情
(2006•宜昌)如图,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC为30°,窗户的一部分在教室地面所形成的影长PE为3.5米,窗户的高度AF为2.5米.求窗外遮阳蓬外端一点D到教室窗户上椽的距离AD.(结果精确0.1米)

【答案】分析:根据平行线的性质,可得在Rt△PEG中,∠P=30°;已知PE=3.5.根据三角函数的定义,解三角形可得EG的长,进而在Rt△BAD中,可得tan30°=,解可得AD的值.
解答:解:过E作EG∥AC交BP于G,
∵EF∥DP,
∴四边形BFEG是平行四边形.
在Rt△PEG中,PE=3.5,∠P=30°,
tan∠EPG=
∴EG=EP•tan∠ADB=3.5×tan30°≈2.02.
又∵四边形BFEG是平行四边形,
∴BF=EG=2.02,
∴AB=AF-BF=2.5-2.02=0.48.
又∵AD∥PE,∠BDA=∠P=30°,
在Rt△BAD中,tan30°=
∴AD==0.48×≈0.8(米).
∴所求的距离AD约为0.8米.
点评:命题立意:考查利用解直角三角形和相似三角形知识解决实际问题的能力.要求学生应用数学知识解决问题,在正确分析题意的基础上建立数学模型,把实际问题转化为数学问题.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2006•宜昌)如图,点O是坐标原点,点A(n,0)是x轴上一动点(n<0).以AO为一边作矩形AOBC,点C在第二象限,且OB=2OA.矩形AOBC绕点A逆时针旋转90°得矩形AGDE.过点A的直线y=kx+m交y轴于点F,FB=FA.抛物线y=ax2+bx+c过点E、F、G且和直线AF交于点H,过点H作HM⊥x轴,垂足为点M.
(1)求k的值;
(2)点A位置改变时,△AMH的面积和矩形AOBC的面积的比值是否改变?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2010年天津市中考数学模拟试卷(3)(解析版) 题型:解答题

(2006•宜昌)如图,点O是坐标原点,点A(n,0)是x轴上一动点(n<0).以AO为一边作矩形AOBC,点C在第二象限,且OB=2OA.矩形AOBC绕点A逆时针旋转90°得矩形AGDE.过点A的直线y=kx+m交y轴于点F,FB=FA.抛物线y=ax2+bx+c过点E、F、G且和直线AF交于点H,过点H作HM⊥x轴,垂足为点M.
(1)求k的值;
(2)点A位置改变时,△AMH的面积和矩形AOBC的面积的比值是否改变?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2006年湖北省宜昌市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•宜昌)如图,点O是坐标原点,点A(n,0)是x轴上一动点(n<0).以AO为一边作矩形AOBC,点C在第二象限,且OB=2OA.矩形AOBC绕点A逆时针旋转90°得矩形AGDE.过点A的直线y=kx+m交y轴于点F,FB=FA.抛物线y=ax2+bx+c过点E、F、G且和直线AF交于点H,过点H作HM⊥x轴,垂足为点M.
(1)求k的值;
(2)点A位置改变时,△AMH的面积和矩形AOBC的面积的比值是否改变?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2006年湖北省宜昌市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•宜昌)如图,点O是坐标原点,点A(n,0)是x轴上一动点(n<0).以AO为一边作矩形AOBC,点C在第二象限,且OB=2OA.矩形AOBC绕点A逆时针旋转90°得矩形AGDE.过点A的直线y=kx+m交y轴于点F,FB=FA.抛物线y=ax2+bx+c过点E、F、G且和直线AF交于点H,过点H作HM⊥x轴,垂足为点M.
(1)求k的值;
(2)点A位置改变时,△AMH的面积和矩形AOBC的面积的比值是否改变?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2006年湖北省宜昌市中考数学试卷(大纲卷)(解析版) 题型:选择题

(2006•宜昌)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=( )

A.130°
B.100°
C.50°
D.65°

查看答案和解析>>

同步练习册答案