精英家教网 > 初中数学 > 题目详情
精英家教网如图,⊙O的半径为1,PA切⊙O于点A,连接OA,OP交⊙O于点D,且∠APO=30°,弦AB⊥OP于点C,则图中阴影部分面积等于(  )
A、
π
6
B、
π
3
C、
π
2
D、
3
2
π
分析:由PA是半径为1的⊙O的切线,得到OA⊥PA,而∠APO=30°,∠POA=90°-30°=60°,而OP垂直平分AB,得到S△AOC=S△BOC,从而得到S阴影部分=S扇形OAD,然后根据扇形的面积公式计算即可.
解答:解:∵PA是半径为1的⊙O的切线,
∴OA⊥PA,
而∠APO=30°,∠POA=90°-30°=60°,
又∵OP垂直平分AB,
∴△AOC≌△BOC,
∴S△AOC=S△BOC
∴S阴影部分=S扇形OAD=
60π×12
360
=
π
6

故选A.
点评:本题考查了扇形的面积公式:S=
r2
360
,其中n为扇形的圆心角的度数,R为圆的半径),或S=
1
2
lR,l为扇形的弧长,R为半径.也考查了切线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为5,AB=5
3
,C是圆上一点,则∠ACB=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为3,直径AB⊥弦CD,垂足为E,点F是BC的中点,那么EF2+OF2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为
5
,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有
 
个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为13cm,弦AB∥CD,两弦位于圆心O的两侧,AB=24cm,CD=10cm,求AB和CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的半径为5,P是弦MN上的一点,且MP:PN=1:2.若PA=2,则MN的长为
6
2
6
2

查看答案和解析>>

同步练习册答案