精英家教网 > 初中数学 > 题目详情

【题目】如图是某款篮球架的示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.26,sin75°≈0.97,tan75°≈3.73, ≈1.73)( )

A.3.04
B.3.05
C.3.06
D.4.40

【答案】B
【解析】解:延长FE交CB的延长线于M,过A作AG⊥FM于G,

在Rt△ABC中,tan∠ACB=
∴AB=BCtan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=
∴sin60°= =
∴FG=2.17,
∴DM=FG+GM﹣DF≈3.05米.
答:篮框D到地面的距离是3.05米.
故答案为:B.
根据三角函数的定义,先求出GM=AB=BCtan75°的值,再求出FG=AF·sin∠FAG的值,得到DM=FG+GM﹣DF的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园. 如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:

(1)图中自变量是____,因变量是______;

(2)小明家到滨海公园的路程为____ km,小明在中心书城逗留的时间为____ h;

(3)小明出发______小时后爸爸驾车出发;

(4)图中A点表示___________________________________;

(5)小明从中心书城到滨海公园的平均速度为______km/h,小明爸爸驾车的平均速度为______km/h;(补充;爸爸驾车经过______追上小明);

(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C点在EF上,BC平分,且.下列结论:

AC平分;②;③;④.其中结论正确的个数有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在中,动点边上,以每秒的速度从点向点运动.

1)如图1,在运动过程中,若平分,且满足,求的度数.

2)如图2,在(1)的条件下,连结并延长与的延长线交于点,连结,若,求的面积.

3)如图3,另一动点边上,以每秒的速度从点出发,在间往返运动,两点同时出发,当点到达点时停止运动(同时点也停止),若,求当运动时间为多少秒时,以D,四点组成的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知DCFP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG

(1)说明:DCAB

(2)求∠PFH的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )

A.29.1米
B.31.9米
C.45.9米
D.95.9米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点A在射线CE上,∠C=∠D

⑴如图1,若ADBC,求证:BDAC

⑵如图2,若∠BAC=∠BADBDBC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;

⑶如图3,在⑵的条件下,过点DDFBC交射线于点F,当∠DFE8DAE时,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点,点是三角形上任意一点,三角形经过平移后得到三角形,点的对应点为.

1)直接写出点的坐标______________.

2)画出三角形平移后的三角形.

3)在轴上是否存在一点,使三角形的面积等于三角形面积的,若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 ,把不等式组的解集在数轴上表示出来,并求出不等式组的整数解的和.

查看答案和解析>>

同步练习册答案