精英家教网 > 初中数学 > 题目详情

如图,在边长为1的正方形网格中有两个三角形△ABC和△DEF,试证这两个三角形相似.

 

 

【答案】

证明见解析.

【解析】

试题分析:根据勾股定理分别计算△ABC与△DEF三边长,根据三角形三边的比值相等可以证明三角形相似,即可解题.

试题解析:由图可知,AB=3, EF=2,由勾股定理得CB=,AC=

DF=,DE=

∴△ABC∽△DEF

考点: 1.相似三角形的判定;2.勾股定理.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,如果边长为1的正六边形ABCDEF绕着顶点A顺时针旋转60°后与正六边形AGHMNP重合,那么点B的对应点是点
 
,点E在整个旋转过程中,所经过的路径长为
 
 (结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心,
1
2
a
长为半径作
DE
EF
FD
,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将边长为3的正六边形A1A2A3A4A5A6,在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心,数学公式长为半径作数学公式数学公式数学公式,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:初三数学圆及旋转题库 第8讲:弧长和扇形面积(解析版) 题型:解答题

已知:如图,在边长为a的正△ABC中,分别以A,B,C点为圆心,长为半径作,求阴影部分的面积.

查看答案和解析>>

同步练习册答案