【题目】现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递总件数的月平均增长率;
(2)如果按此速度增涨,该公司六月份的快递件数将达到多少万件?
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,∠B=30°,AC=,D、E分别在边AC、BC上,CD=1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为( )
A.2B.3C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的对称轴是直线,且与轴相交于A,B两点(点B在点A的右侧),与轴交于点C.
(1)求抛物线的解析式和A,B两点的坐标;
(2)若点P是抛物线上B、C两点之间的一个动点(不与B,C重合),则是否存在一点P,使△BPC的面积最大?若存在,请求出△BPC的最大面积;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=90°,以AB为直径的⊙O交BC于点F,连结OC,过点B作BD∥OC交⊙O点D.连接AD交OC于点E
(1)求证:BD=AE.
(2)若OE=1,求DF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案所示图形是顶点在原点的抛物线的部分,方案二所示的图形是射线, 设推销员销售产品的数量为(件),付给推销员的月报酬为(元),
(1)请直接写出两种方案中关于的函数关系式:方案一: ,方案二: ;
(2)当销售量达到多少件时,两种方案的月报酬差额将达到元?
(3)若公司决定改进“方案二”:基本工资元,每销售件产品再增加报酬元,当推销员销售量达到件时,方案二的月报酬不低于方案一的月报酬,求的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位: ).
(1)直接写出上下两个长方休的长、宽、商分别是多少:
(2)求这个立体图形的体积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.
(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?
(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加小时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B两点,与y轴交于点C(0,3),抛物线的顶点在直线x=1上.
(1)求抛物线的解析式;
(2)点P为第一象限内抛物线上的一个动点,过点P做PQ∥y轴交BC与点Q,当点P在何位置时,线段PQ的长度有最大值?
(3)点M在x轴上,点N在抛物线对称轴上,是否存在点M,点N,使以点M,N,C,B为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展阳光体育活动,每位同学从篮球、足球、乒乓球和羽毛球四项体育运动项目中选择自己最喜欢的一项训练.学校体育组对八年级(1)班、(2)班同学参加体育活动的情况进行了调查,结果如图所示:
(1)求八年级(2)班参加体育运动的人数,并把扇形统计图和折线统计图补充完整.
(2)今年重庆5月开展中学生“阳光体育”技能大赛. 学校打算从八年级(1)、(2)选派两个优秀体育运动项目去参赛.产生的办法是这样的:先组织八年级(1)班和(2)班的相同项目的兴趣小组对决产生一个优胜队,然后学校从产生出的四个优胜队中随机抽取两个队代表学校参赛.请你用列表法或画树形图求选派两队恰好是乒乓球队和篮球队的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com